Library UniMath.CategoryTheory.categories.rigs
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Local Open Scope cat.
Section def_rig_precategory.
Definition rig_fun_space (A B : rig) : hSet := hSetpair (rigfun A B) (isasetrigfun A B).
Definition rig_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob -> ob -> UU) rig (λ A B : rig, rig_fun_space A B).
Definition rig_precategory_data : precategory_data :=
precategory_data_pair
rig_precategory_ob_mor (λ (X : rig), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : rig) (f : rigfun X Y) (g : rigfun Y Z) => rigfuncomp f g).
Local Definition rig_id_left (X Y : rig) (f : rigfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Show proof.
Local Definition rig_id_right (X Y : rig) (f : rigfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Show proof.
Local Definition rig_assoc (X Y Z W : rig) (f : rigfun X Y) (g : rigfun Y Z) (h : rigfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Show proof.
Lemma is_precategory_rig_precategory_data : is_precategory rig_precategory_data.
Show proof.
Definition rig_precategory : precategory :=
mk_precategory rig_precategory_data is_precategory_rig_precategory_data.
Lemma has_homsets_rig_precategory : has_homsets rig_precategory.
Show proof.
End def_rig_precategory.
Definition rig_fun_space (A B : rig) : hSet := hSetpair (rigfun A B) (isasetrigfun A B).
Definition rig_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob -> ob -> UU) rig (λ A B : rig, rig_fun_space A B).
Definition rig_precategory_data : precategory_data :=
precategory_data_pair
rig_precategory_ob_mor (λ (X : rig), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : rig) (f : rigfun X Y) (g : rigfun Y Z) => rigfuncomp f g).
Local Definition rig_id_left (X Y : rig) (f : rigfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Show proof.
use rigfun_paths. use idpath.
Opaque rig_id_left.Local Definition rig_id_right (X Y : rig) (f : rigfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Show proof.
use rigfun_paths. use idpath.
Opaque rig_id_right.Local Definition rig_assoc (X Y Z W : rig) (f : rigfun X Y) (g : rigfun Y Z) (h : rigfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Show proof.
use rigfun_paths. use idpath.
Opaque rig_assoc.Lemma is_precategory_rig_precategory_data : is_precategory rig_precategory_data.
Show proof.
use mk_is_precategory_one_assoc.
- intros a b f. use rig_id_left.
- intros a b f. use rig_id_right.
- intros a b c d f g h. use rig_assoc.
- intros a b f. use rig_id_left.
- intros a b f. use rig_id_right.
- intros a b c d f g h. use rig_assoc.
Definition rig_precategory : precategory :=
mk_precategory rig_precategory_data is_precategory_rig_precategory_data.
Lemma has_homsets_rig_precategory : has_homsets rig_precategory.
Show proof.
intros X Y. use isasetrigfun.
End def_rig_precategory.
Section def_rig_category.
Lemma rig_iso_is_equiv (A B : ob rig_precategory) (f : iso A B) : isweq (pr1 (pr1 f)).
Show proof.
use isweq_iso.
- exact (pr1rigfun _ _ (inv_from_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
intros x0. use isapropisrigfun.
Opaque rig_iso_is_equiv.- exact (pr1rigfun _ _ (inv_from_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
intros x0. use isapropisrigfun.
Lemma rig_iso_equiv (X Y : ob rig_precategory) : iso X Y -> rigiso (X : rig) (Y : rig).
Show proof.
intro f.
use rigisopair.
- exact (weqpair (pr1 (pr1 f)) (rig_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
use rigisopair.
- exact (weqpair (pr1 (pr1 f)) (rig_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
Lemma rig_equiv_is_iso (X Y : ob rig_precategory) (f : rigiso (X : rig) (Y : rig)) :
@is_iso rig_precategory X Y (rigfunconstr (pr2 f)).
Show proof.
use is_iso_qinv.
- exact (rigfunconstr (pr2 (invrigiso f))).
- use mk_is_inverse_in_precat.
+ use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
+ use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Opaque rig_equiv_is_iso.- exact (rigfunconstr (pr2 (invrigiso f))).
- use mk_is_inverse_in_precat.
+ use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
+ use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Lemma rig_equiv_iso (X Y : ob rig_precategory) : rigiso (X : rig) (Y : rig) -> iso X Y.
Show proof.
intros f. exact (@isopair rig_precategory X Y (rigfunconstr (pr2 f))
(rig_equiv_is_iso X Y f)).
(rig_equiv_is_iso X Y f)).
Lemma rig_iso_equiv_is_equiv (X Y : rig_precategory) : isweq (rig_iso_equiv X Y).
Show proof.
use isweq_iso.
- exact (rig_equiv_iso X Y).
- intros x. use eq_iso. use rigfun_paths. use idpath.
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
Opaque rig_iso_equiv_is_equiv.- exact (rig_equiv_iso X Y).
- intros x. use eq_iso. use rigfun_paths. use idpath.
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
Definition rig_iso_equiv_weq (X Y : ob rig_precategory) :
weq (iso X Y) (rigiso (X : rig) (Y : rig)).
Show proof.
use weqpair.
- exact (rig_iso_equiv X Y).
- exact (rig_iso_equiv_is_equiv X Y).
- exact (rig_iso_equiv X Y).
- exact (rig_iso_equiv_is_equiv X Y).
Lemma rig_equiv_iso_is_equiv (X Y : ob rig_precategory) : isweq (rig_equiv_iso X Y).
Show proof.
use isweq_iso.
- exact (rig_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
- intros x. use eq_iso. use rigfun_paths. use idpath.
Opaque rig_equiv_iso_is_equiv.- exact (rig_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
- intros x. use eq_iso. use rigfun_paths. use idpath.
Definition rig_equiv_weq_iso (X Y : ob rig_precategory) :
(rigiso (X : rig) (Y : rig)) ≃ (iso X Y).
Show proof.
use weqpair.
- exact (rig_equiv_iso X Y).
- exact (rig_equiv_iso_is_equiv X Y).
- exact (rig_equiv_iso X Y).
- exact (rig_equiv_iso_is_equiv X Y).
Definition rig_precategory_isweq (X Y : ob rig_precategory) : isweq (λ p : X = Y, idtoiso p).
Show proof.
use (@isweqhomot
(X = Y) (iso X Y)
(pr1weq (weqcomp (rig_univalence X Y) (rig_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (rig_univalence X Y)
(rig_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Opaque rig_precategory_isweq.(X = Y) (iso X Y)
(pr1weq (weqcomp (rig_univalence X Y) (rig_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (rig_univalence X Y)
(rig_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Definition rig_precategory_is_univalent : is_univalent rig_precategory.
Show proof.
use mk_is_univalent.
- intros X Y. exact (rig_precategory_isweq X Y).
- exact has_homsets_rig_precategory.
- intros X Y. exact (rig_precategory_isweq X Y).
- exact has_homsets_rig_precategory.
Definition rig_category : univalent_category :=
mk_category rig_precategory rig_precategory_is_univalent.
End def_rig_category.