Library UniMath.CategoryTheory.categories.rings
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Local Open Scope cat.
Section def_ring_precategory.
Definition ring_fun_space (A B : ring) : hSet := hSetpair (ringfun A B) (isasetrigfun A B).
Definition ring_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob -> ob -> UU) ring (λ A B : ring, ring_fun_space A B).
Definition ring_precategory_data : precategory_data :=
precategory_data_pair
ring_precategory_ob_mor (λ (X : ring), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : ring) (f : ringfun X Y) (g : ringfun Y Z) => rigfuncomp f g).
Local Lemma ring_id_left (X Y : ring) (f : ringfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Show proof.
Local Lemma ring_id_right (X Y : ring) (f : ringfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Show proof.
Local Lemma ring_assoc (X Y Z W : ring) (f : ringfun X Y) (g : ringfun Y Z) (h : ringfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Show proof.
Lemma is_precategory_ring_precategory_data : is_precategory ring_precategory_data.
Show proof.
Definition ring_precategory : precategory :=
mk_precategory ring_precategory_data is_precategory_ring_precategory_data.
Lemma has_homsets_ring_precategory : has_homsets ring_precategory.
Show proof.
End def_ring_precategory.
Definition ring_fun_space (A B : ring) : hSet := hSetpair (ringfun A B) (isasetrigfun A B).
Definition ring_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob -> ob -> UU) ring (λ A B : ring, ring_fun_space A B).
Definition ring_precategory_data : precategory_data :=
precategory_data_pair
ring_precategory_ob_mor (λ (X : ring), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : ring) (f : ringfun X Y) (g : ringfun Y Z) => rigfuncomp f g).
Local Lemma ring_id_left (X Y : ring) (f : ringfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Show proof.
use rigfun_paths. use idpath.
Opaque ring_id_left.Local Lemma ring_id_right (X Y : ring) (f : ringfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Show proof.
use rigfun_paths. use idpath.
Opaque ring_id_right.Local Lemma ring_assoc (X Y Z W : ring) (f : ringfun X Y) (g : ringfun Y Z) (h : ringfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Show proof.
use rigfun_paths. use idpath.
Opaque ring_assoc.Lemma is_precategory_ring_precategory_data : is_precategory ring_precategory_data.
Show proof.
use mk_is_precategory_one_assoc.
- intros a b f. use ring_id_left.
- intros a b f. use ring_id_right.
- intros a b c d f g h. use ring_assoc.
- intros a b f. use ring_id_left.
- intros a b f. use ring_id_right.
- intros a b c d f g h. use ring_assoc.
Definition ring_precategory : precategory :=
mk_precategory ring_precategory_data is_precategory_ring_precategory_data.
Lemma has_homsets_ring_precategory : has_homsets ring_precategory.
Show proof.
intros X Y. use isasetrigfun.
End def_ring_precategory.
Section def_ring_category.
Lemma ring_iso_is_equiv (A B : ob ring_precategory) (f : iso A B) : isweq (pr1 (pr1 f)).
Show proof.
use isweq_iso.
- exact (pr1rigfun _ _ (inv_from_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
intros x0. use isapropisrigfun.
Opaque ring_iso_is_equiv.- exact (pr1rigfun _ _ (inv_from_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
intros x0. use isapropisrigfun.
Lemma ring_iso_equiv (X Y : ob ring_precategory) : iso X Y -> ringiso (X : ring) (Y : ring).
Show proof.
intro f.
use ringisopair.
- exact (weqpair (pr1 (pr1 f)) (ring_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
use ringisopair.
- exact (weqpair (pr1 (pr1 f)) (ring_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
Lemma ring_equiv_is_iso (X Y : ob ring_precategory) (f : ringiso (X : ring) (Y : ring)) :
@is_iso ring_precategory X Y (ringfunconstr (pr2 f)).
Show proof.
use is_iso_qinv.
- exact (ringfunconstr (pr2 (invrigiso f))).
- use mk_is_inverse_in_precat.
+ use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
+ use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Opaque ring_equiv_is_iso.- exact (ringfunconstr (pr2 (invrigiso f))).
- use mk_is_inverse_in_precat.
+ use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
+ use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Lemma ring_equiv_iso (X Y : ob ring_precategory) : ringiso (X : ring) (Y : ring) -> iso X Y.
Show proof.
intros f. exact (@isopair ring_precategory X Y (ringfunconstr (pr2 f))
(ring_equiv_is_iso X Y f)).
(ring_equiv_is_iso X Y f)).
Lemma ring_iso_equiv_is_equiv (X Y : ring_precategory) : isweq (ring_iso_equiv X Y).
Show proof.
use isweq_iso.
- exact (ring_equiv_iso X Y).
- intros x. use eq_iso. use rigfun_paths. use idpath.
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
Opaque ring_iso_equiv_is_equiv.- exact (ring_equiv_iso X Y).
- intros x. use eq_iso. use rigfun_paths. use idpath.
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
Definition ring_iso_equiv_weq (X Y : ob ring_precategory) :
weq (iso X Y) (ringiso (X : ring) (Y : ring)).
Show proof.
use weqpair.
- exact (ring_iso_equiv X Y).
- exact (ring_iso_equiv_is_equiv X Y).
- exact (ring_iso_equiv X Y).
- exact (ring_iso_equiv_is_equiv X Y).
Lemma ring_equiv_iso_is_equiv (X Y : ob ring_precategory) : isweq (ring_equiv_iso X Y).
Show proof.
use isweq_iso.
- exact (ring_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
- intros x. use eq_iso. use rigfun_paths. use idpath.
Opaque ring_equiv_iso_is_equiv.- exact (ring_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
- intros x. use eq_iso. use rigfun_paths. use idpath.
Definition ring_equiv_weq_iso (X Y : ob ring_precategory) :
(ringiso (X : ring) (Y : ring)) ≃ (iso X Y).
Show proof.
use weqpair.
- exact (ring_equiv_iso X Y).
- exact (ring_equiv_iso_is_equiv X Y).
- exact (ring_equiv_iso X Y).
- exact (ring_equiv_iso_is_equiv X Y).
Definition ring_precategory_isweq (X Y : ob ring_precategory) : isweq (λ p : X = Y, idtoiso p).
Show proof.
use (@isweqhomot
(X = Y) (iso X Y)
(pr1weq (weqcomp (ring_univalence X Y) (ring_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (ring_univalence X Y) (ring_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Opaque ring_precategory_isweq.(X = Y) (iso X Y)
(pr1weq (weqcomp (ring_univalence X Y) (ring_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (ring_univalence X Y) (ring_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Definition ring_precategory_is_univalent : is_univalent ring_precategory.
Show proof.
use mk_is_univalent.
- intros X Y. exact (ring_precategory_isweq X Y).
- exact has_homsets_ring_precategory.
- intros X Y. exact (ring_precategory_isweq X Y).
- exact has_homsets_ring_precategory.
Definition ring_category : univalent_category :=
mk_category ring_precategory ring_precategory_is_univalent.
End def_ring_category.