Library UniMath.CategoryTheory.limits.coequalizers
- Proof that the coequalizer arrow is epi (CoequalizerArrowisEpi)
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Epis.
Section def_coequalizers.
Context {C : precategory}.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Epis.
Section def_coequalizers.
Context {C : precategory}.
Definition and construction of isCoequalizer.
Definition isCoequalizer {x y z : C} (f g : x --> y) (e : y --> z)
(H : f · e = g · e) : UU :=
∏ (w : C) (h : y --> w) (H : f · h = g · h),
∃! φ : z --> w, e · φ = h.
Definition mk_isCoequalizer {y z w : C} (f g : y --> z) (e : z --> w)
(H : f · e = g · e) :
(∏ (w0 : C) (h : z --> w0) (H' : f · h = g · h),
∃! ψ : w --> w0, e · ψ = h) -> isCoequalizer f g e H.
Show proof.
Lemma isaprop_isCoequalizer {y z w : C} (f g : y --> z) (e : z --> w)
(H : f · e = g · e) :
isaprop (isCoequalizer f g e H).
Show proof.
Lemma isCoequalizer_path {hs : has_homsets C} {x y z : C} {f g : x --> y} {e : y --> z}
{H H' : f · e = g · e} (iC : isCoequalizer f g e H) :
isCoequalizer f g e H'.
Show proof.
(H : f · e = g · e) : UU :=
∏ (w : C) (h : y --> w) (H : f · h = g · h),
∃! φ : z --> w, e · φ = h.
Definition mk_isCoequalizer {y z w : C} (f g : y --> z) (e : z --> w)
(H : f · e = g · e) :
(∏ (w0 : C) (h : z --> w0) (H' : f · h = g · h),
∃! ψ : w --> w0, e · ψ = h) -> isCoequalizer f g e H.
Show proof.
intros X. unfold isCoequalizer. exact X.
Lemma isaprop_isCoequalizer {y z w : C} (f g : y --> z) (e : z --> w)
(H : f · e = g · e) :
isaprop (isCoequalizer f g e H).
Show proof.
repeat (apply impred; intro).
apply isapropiscontr.
apply isapropiscontr.
Lemma isCoequalizer_path {hs : has_homsets C} {x y z : C} {f g : x --> y} {e : y --> z}
{H H' : f · e = g · e} (iC : isCoequalizer f g e H) :
isCoequalizer f g e H'.
Show proof.
use mk_isCoequalizer.
intros w0 h H'0.
use unique_exists.
- exact (pr1 (pr1 (iC w0 h H'0))).
- exact (pr2 (pr1 (iC w0 h H'0))).
- intros y0. apply hs.
- intros y0 X. exact (base_paths _ _ (pr2 (iC w0 h H'0) (tpair _ y0 X))).
intros w0 h H'0.
use unique_exists.
- exact (pr1 (pr1 (iC w0 h H'0))).
- exact (pr2 (pr1 (iC w0 h H'0))).
- intros y0. apply hs.
- intros y0 X. exact (base_paths _ _ (pr2 (iC w0 h H'0) (tpair _ y0 X))).
Proves that the arrow from the coequalizer object with the right
commutativity property is unique.
Lemma isCoequalizerOutUnique {y z w: C} (f g : y --> z) (e : z --> w)
(H : f · e = g · e) (E : isCoequalizer f g e H)
(w0 : C) (h : z --> w0) (H' : f · h = g · h)
(φ : w --> w0) (H'' : e · φ = h) :
φ = (pr1 (pr1 (E w0 h H'))).
Show proof.
(H : f · e = g · e) (E : isCoequalizer f g e H)
(w0 : C) (h : z --> w0) (H' : f · h = g · h)
(φ : w --> w0) (H'' : e · φ = h) :
φ = (pr1 (pr1 (E w0 h H'))).
Show proof.
set (T := tpair (fun ψ : w --> w0 => e · ψ = h) φ H'').
set (T' := pr2 (E w0 h H') T).
apply (base_paths _ _ T').
set (T' := pr2 (E w0 h H') T).
apply (base_paths _ _ T').
Definition and construction of coequalizers.
Definition Coequalizer {y z : C} (f g : y --> z) : UU :=
∑ e : (∑ w : C, z --> w),
(∑ H : f · (pr2 e) = g · (pr2 e), isCoequalizer f g (pr2 e) H).
Definition mk_Coequalizer {y z w : C} (f g : y --> z) (e : z --> w)
(H : f · e = g · e) (isE : isCoequalizer f g e H) :
Coequalizer f g.
Show proof.
∑ e : (∑ w : C, z --> w),
(∑ H : f · (pr2 e) = g · (pr2 e), isCoequalizer f g (pr2 e) H).
Definition mk_Coequalizer {y z w : C} (f g : y --> z) (e : z --> w)
(H : f · e = g · e) (isE : isCoequalizer f g e H) :
Coequalizer f g.
Show proof.
use tpair.
- use tpair.
+ apply w.
+ apply e.
- simpl. exact (tpair _ H isE).
- use tpair.
+ apply w.
+ apply e.
- simpl. exact (tpair _ H isE).
Coequalizers in precategories.
Definition Coequalizers := ∏ (y z : C) (f g : y --> z),
Coequalizer f g.
Definition hasCoequalizers := ∏ (y z : C) (f g : y --> z),
ishinh (Coequalizer f g).
Coequalizer f g.
Definition hasCoequalizers := ∏ (y z : C) (f g : y --> z),
ishinh (Coequalizer f g).
Returns the coequalizer object.
Definition CoequalizerObject {y z : C} {f g : y --> z} (E : Coequalizer f g) :
C := pr1 (pr1 E).
Coercion CoequalizerObject : Coequalizer >-> ob.
C := pr1 (pr1 E).
Coercion CoequalizerObject : Coequalizer >-> ob.
Returns the coequalizer arrow.
Definition CoequalizerArrow {y z : C} {f g : y --> z} (E : Coequalizer f g) :
C⟦z, E⟧ := pr2 (pr1 E).
C⟦z, E⟧ := pr2 (pr1 E).
The equality on morphisms that coequalizers must satisfy.
Definition CoequalizerEqAr {y z : C} {f g : y --> z} (E : Coequalizer f g) :
f · CoequalizerArrow E = g · CoequalizerArrow E := pr1 (pr2 E).
f · CoequalizerArrow E = g · CoequalizerArrow E := pr1 (pr2 E).
Returns the property isCoequalizer from Coequalizer.
Definition isCoequalizer_Coequalizer {y z : C} {f g : y --> z}
(E : Coequalizer f g) :
isCoequalizer f g (CoequalizerArrow E) (CoequalizerEqAr E) := pr2 (pr2 E).
(E : Coequalizer f g) :
isCoequalizer f g (CoequalizerArrow E) (CoequalizerEqAr E) := pr2 (pr2 E).
Every morphism which satisfy the coequalizer equality on morphism factors
uniquely through the CoequalizerArrow.
Definition CoequalizerOut {y z : C} {f g : y --> z} (E : Coequalizer f g)
(w : C) (h : z --> w) (H : f · h = g · h) :
C⟦E, w⟧ := pr1 (pr1 (isCoequalizer_Coequalizer E w h H)).
Lemma CoequalizerCommutes {y z : C} {f g : y --> z} (E : Coequalizer f g)
(w : C) (h : z --> w) (H : f · h = g · h) :
(CoequalizerArrow E) · (CoequalizerOut E w h H) = h.
Show proof.
Lemma isCoequalizerOutsEq {y z w: C} {f g : y --> z} {e : z --> w}
{H : f · e = g · e} (E : isCoequalizer f g e H)
{w0 : C} (φ1 φ2: w --> w0) (H' : e · φ1 = e · φ2) : φ1 = φ2.
Show proof.
Lemma CoequalizerOutsEq {y z: C} {f g : y --> z} (E : Coequalizer f g)
{w : C} (φ1 φ2: C⟦E, w⟧)
(H' : (CoequalizerArrow E) · φ1 = (CoequalizerArrow E) · φ2) :
φ1 = φ2.
Show proof.
Lemma CoequalizerOutComp {y z : C} {f g : y --> z} (CE : Coequalizer f g) {w w' : C}
(h1 : z --> w) (h2 : w --> w')
(H1 : f · (h1 · h2) = g · (h1 · h2)) (H2 : f · h1 = g · h1) :
CoequalizerOut CE w' (h1 · h2) H1 = CoequalizerOut CE w h1 H2 · h2.
Show proof.
(w : C) (h : z --> w) (H : f · h = g · h) :
C⟦E, w⟧ := pr1 (pr1 (isCoequalizer_Coequalizer E w h H)).
Lemma CoequalizerCommutes {y z : C} {f g : y --> z} (E : Coequalizer f g)
(w : C) (h : z --> w) (H : f · h = g · h) :
(CoequalizerArrow E) · (CoequalizerOut E w h H) = h.
Show proof.
exact (pr2 (pr1 ((isCoequalizer_Coequalizer E) w h H))).
Lemma isCoequalizerOutsEq {y z w: C} {f g : y --> z} {e : z --> w}
{H : f · e = g · e} (E : isCoequalizer f g e H)
{w0 : C} (φ1 φ2: w --> w0) (H' : e · φ1 = e · φ2) : φ1 = φ2.
Show proof.
assert (H'1 : f · e · φ1 = g · e · φ1).
rewrite H. apply idpath.
set (E' := mk_Coequalizer _ _ _ _ E).
repeat rewrite <- assoc in H'1.
set (E'ar := CoequalizerOut E' w0 (e · φ1) H'1).
intermediate_path E'ar.
apply isCoequalizerOutUnique. apply idpath.
apply pathsinv0. apply isCoequalizerOutUnique. apply pathsinv0. apply H'.
rewrite H. apply idpath.
set (E' := mk_Coequalizer _ _ _ _ E).
repeat rewrite <- assoc in H'1.
set (E'ar := CoequalizerOut E' w0 (e · φ1) H'1).
intermediate_path E'ar.
apply isCoequalizerOutUnique. apply idpath.
apply pathsinv0. apply isCoequalizerOutUnique. apply pathsinv0. apply H'.
Lemma CoequalizerOutsEq {y z: C} {f g : y --> z} (E : Coequalizer f g)
{w : C} (φ1 φ2: C⟦E, w⟧)
(H' : (CoequalizerArrow E) · φ1 = (CoequalizerArrow E) · φ2) :
φ1 = φ2.
Show proof.
apply (isCoequalizerOutsEq (isCoequalizer_Coequalizer E) _ _ H').
Lemma CoequalizerOutComp {y z : C} {f g : y --> z} (CE : Coequalizer f g) {w w' : C}
(h1 : z --> w) (h2 : w --> w')
(H1 : f · (h1 · h2) = g · (h1 · h2)) (H2 : f · h1 = g · h1) :
CoequalizerOut CE w' (h1 · h2) H1 = CoequalizerOut CE w h1 H2 · h2.
Show proof.
use CoequalizerOutsEq. rewrite CoequalizerCommutes. rewrite assoc.
rewrite CoequalizerCommutes. apply idpath.
rewrite CoequalizerCommutes. apply idpath.
Morphisms between coequalizer objects with the right commutativity
equalities.
Definition identity_is_CoequalizerOut {y z : C} {f g : y --> z}
(E : Coequalizer f g) :
∑ φ : C⟦E, E⟧, (CoequalizerArrow E) · φ = (CoequalizerArrow E).
Show proof.
Lemma CoequalizerEndo_is_identity {y z : C} {f g : y --> z}
{E : Coequalizer f g} (φ : C⟦E, E⟧)
(H : (CoequalizerArrow E) · φ = CoequalizerArrow E) :
identity E = φ.
Show proof.
Definition from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
(E E': Coequalizer f g) : C⟦E, E'⟧.
Show proof.
Lemma are_inverses_from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
{E E': Coequalizer f g} :
is_inverse_in_precat (from_Coequalizer_to_Coequalizer E E')
(from_Coequalizer_to_Coequalizer E' E).
Show proof.
Lemma isiso_from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
(E E' : Coequalizer f g) :
is_iso (from_Coequalizer_to_Coequalizer E E').
Show proof.
Definition iso_from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
(E E' : Coequalizer f g) : iso E E' :=
tpair _ _ (isiso_from_Coequalizer_to_Coequalizer E E').
(E : Coequalizer f g) :
∑ φ : C⟦E, E⟧, (CoequalizerArrow E) · φ = (CoequalizerArrow E).
Show proof.
exists (identity E).
apply id_right.
apply id_right.
Lemma CoequalizerEndo_is_identity {y z : C} {f g : y --> z}
{E : Coequalizer f g} (φ : C⟦E, E⟧)
(H : (CoequalizerArrow E) · φ = CoequalizerArrow E) :
identity E = φ.
Show proof.
set (H1 := tpair ((fun φ' : C⟦E, E⟧ => _ · φ' = _)) φ H).
assert (H2 : identity_is_CoequalizerOut E = H1).
- apply proofirrelevance.
apply isapropifcontr.
apply (isCoequalizer_Coequalizer E).
apply CoequalizerEqAr.
- apply (base_paths _ _ H2).
assert (H2 : identity_is_CoequalizerOut E = H1).
- apply proofirrelevance.
apply isapropifcontr.
apply (isCoequalizer_Coequalizer E).
apply CoequalizerEqAr.
- apply (base_paths _ _ H2).
Definition from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
(E E': Coequalizer f g) : C⟦E, E'⟧.
Show proof.
apply (CoequalizerOut E E' (CoequalizerArrow E')).
apply CoequalizerEqAr.
apply CoequalizerEqAr.
Lemma are_inverses_from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
{E E': Coequalizer f g} :
is_inverse_in_precat (from_Coequalizer_to_Coequalizer E E')
(from_Coequalizer_to_Coequalizer E' E).
Show proof.
split; apply pathsinv0; use CoequalizerEndo_is_identity;
rewrite assoc; unfold from_Coequalizer_to_Coequalizer;
repeat rewrite CoequalizerCommutes; apply idpath.
rewrite assoc; unfold from_Coequalizer_to_Coequalizer;
repeat rewrite CoequalizerCommutes; apply idpath.
Lemma isiso_from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
(E E' : Coequalizer f g) :
is_iso (from_Coequalizer_to_Coequalizer E E').
Show proof.
apply (is_iso_qinv _ (from_Coequalizer_to_Coequalizer E' E)).
apply are_inverses_from_Coequalizer_to_Coequalizer.
apply are_inverses_from_Coequalizer_to_Coequalizer.
Definition iso_from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
(E E' : Coequalizer f g) : iso E E' :=
tpair _ _ (isiso_from_Coequalizer_to_Coequalizer E E').
We prove that CoequalizerArrow is an epi.
Lemma CoequalizerArrowisEpi {y z : C} {f g : y --> z} (E : Coequalizer f g ) :
isEpi (CoequalizerArrow E).
Show proof.
Lemma CoequalizerArrowEpi {y z : C} {f g : y --> z} (E : Coequalizer f g ) :
Epi _ z E.
Show proof.
End def_coequalizers.
isEpi (CoequalizerArrow E).
Show proof.
apply mk_isEpi.
intros z0 g0 h X.
apply (CoequalizerOutsEq E).
apply X.
intros z0 g0 h X.
apply (CoequalizerOutsEq E).
apply X.
Lemma CoequalizerArrowEpi {y z : C} {f g : y --> z} (E : Coequalizer f g ) :
Epi _ z E.
Show proof.
exact (mk_Epi C (CoequalizerArrow E) (CoequalizerArrowisEpi E)).
End def_coequalizers.
Make the C not implicit for Coequalizers
Arguments Coequalizers : clear implicits.