TypeTopology
UF.CumulativeHierarchyUF.CumulativeHierarchy-LocallySmall
Ordinals.CumulativeHierarchyOrdinals.CumulativeHierarchy-Addendum
Cubical Agda library
bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/src/master/MEWO/
Definition-1 : {X : π€ Μ} (_<_ : X β X β π₯ Μ) β X β π€ β π₯ Μ
Definition-1 = is-accessible
Lemma-2-β : {X : π€ Μ} (_<_ : X β X β π₯ Μ)
β (β x β is-accessible _<_ x)
β β {π¦} (P : X β π¦ Μ) β (β x β (β y β y < x β P y) β P x) β β x β P x
Lemma-2-β = transfinite-induction
Lemma-2-β : {X : π€ Μ} (_<_ : X β X β π₯ Μ)
β (β {π¦} (P : X β π¦ Μ) β (β x β (β y β y < x β P y) β P x) β β x β P x)
β β x β is-accessible _<_ x
Lemma-2-β _<_ ti = ti (is-accessible _<_) (Ξ» _ β step)
Definition-3 : ({X : π€ Μ} (_<_ : X β X β π₯ Μ) β (π€ β π₯ Μ))
Γ ({X : π€ Μ} (_<_ : X β X β π₯ Μ) β (π€ β π₯ Μ))
Γ ({X : π€ Μ} (_<_ : X β X β π₯ Μ) β (π€ β π₯ Μ))
Γ ({X : π€ Μ} (_<_ : X β X β π₯ Μ) β (π€ β π₯ Μ))
Γ (π€ βΊ Μ)
Definition-3 = is-prop-valued
, is-well-founded
, is-extensional
, is-transitive
, Ordinal _
Remark-4 : (Ξ± : Ordinal π€) β is-set β¨ Ξ± β©
Remark-4 = underlying-type-is-set fe'
Definition-5 : ((Ξ± : Ordinal π€) β β¨ Ξ± β© β Ordinal π€)
Γ (Ordinal π€ β Ordinal π€ β π€ βΊ Μ)
Definition-5 = _β_
, _β²_
Remark-6 : (Ξ± Ξ² : Ordinal π€) β (Ξ± β² Ξ²) β (Ξ± β²β» Ξ²)
Remark-6 = β²-is-equivalent-to-β²β»
Theorem-7 : is-well-order (_β²_ {π€}) Γ (Ordinal (π€ βΊ))
Theorem-7 = β²-is-well-order , OO _
Definition-8 : ((Ξ± : Ordinal π€) (Ξ² : Ordinal π₯) β (β¨ Ξ± β© β β¨ Ξ² β©) β π€ β π₯ Μ)
Γ (Ordinal π€ β Ordinal π₯ β π€ β π₯ Μ)
Definition-8 = is-simulation
, _β΄_
Proposition-9 : ((Ξ± : Ordinal π€) β Ξ± β΄ Ξ±)
Γ ((Ξ± Ξ² : Ordinal π€) β Ξ± β΄ Ξ² β Ξ² β΄ Ξ± β Ξ± οΌ Ξ²)
Γ ((Ξ± : Ordinal π€) (Ξ² : Ordinal π₯) (Ξ³ : Ordinal π¦) β Ξ± β΄ Ξ² β Ξ² β΄ Ξ³ β Ξ± β΄ Ξ³)
Γ ((Ξ± Ξ² : Ordinal π€) β Ξ± β΄ Ξ²
β β Ξ³ β Ξ³ β² Ξ± β Ξ³ β² Ξ²)
Γ ({Ξ± Ξ² : Ordinal π€} β (β Ξ³ β Ξ³ β² Ξ± β Ξ³ β² Ξ²)
β (a : β¨ Ξ± β©) β Ξ£ b κ β¨ Ξ² β© , (Ξ± β a) οΌ (Ξ² β b))
Γ ({Ξ± Ξ² : Ordinal π€} β ((a : β¨ Ξ± β©) β Ξ£ b κ β¨ Ξ² β© , (Ξ± β a) οΌ (Ξ² β b))
β Ξ± β΄ Ξ²)
Proposition-9 = β΄-refl
, β΄-antisym
, β΄-trans
, β΄-gives-βΌ
, from-βΌ
, to-β΄ _ _
Lemma-10 : (Ξ± : Ordinal π€) (Ξ² : Ordinal π₯) (f : β¨ Ξ± β© β β¨ Ξ² β©)
β (is-order-equiv Ξ± Ξ² f) β
(is-equiv f Γ is-order-preserving Ξ± Ξ² f Γ is-order-reflecting Ξ± Ξ² f)
Lemma-10 Ξ± Ξ² f = (Ξ» p β order-equivs-are-equivs Ξ± Ξ² p
, order-equivs-are-order-preserving Ξ± Ξ² p
, order-equivs-are-order-reflecting Ξ± Ξ² f p)
, (Ξ» (x , y , z) β order-preserving-reflecting-equivs-are-order-equivs Ξ± Ξ² f x y z)
Lemma-11 : (Ξ± : Ordinal π€) (a b : β¨ Ξ± β©) (p : b βΊβ¨ Ξ± β© a)
β ((Ξ± β a ) β (b , p)) οΌ (Ξ± β b)
Lemma-11 = iterated-β
Definition-12 : Ordinal π€ β Ordinal π€ β Ordinal π€
Definition-12 = _+β_
Lemma-13-i : {Ξ± Ξ² : Ordinal π€} (a : β¨ Ξ± β©)
β (Ξ± β a) οΌ ((Ξ± +β Ξ²) β inl a)
Lemma-13-i = +β-β-left
Lemma-13-ii : (Ξ± : Ordinal π€) β (Ξ± +β πβ) β inr β οΌ Ξ±
Lemma-13-ii = +β-πβ-β-right
Definition-14 : {I : π€ Μ} (Ξ± : I β Ordinal π€) β Ordinal π€
Definition-14 = sup
Lemma-15-i : {I : π€ Μ} (Ξ± : I β Ordinal π€)
β (i : I) (x : β¨ Ξ± i β©) β sup Ξ± β prβ (sup-is-upper-bound Ξ± i) x οΌ Ξ± i β x
Lemma-15-i = initial-segment-of-sup-at-component
Lemma-15-ii : {I : π€ Μ} (Ξ± : I β Ordinal π€)
β (y : β¨ sup Ξ± β©) β β₯ Ξ£ i κ I , Ξ£ x κ β¨ Ξ± i β© , sup Ξ± β y οΌ Ξ± i β x β₯
Lemma-15-ii = initial-segment-of-sup-is-initial-segment-of-some-component
Definition-16 : π β π€ βΊ Μ
Definition-16 = is-transitive-set
β
β¨β
β© β¨β
,β¨β
β©β© β¨β¨β
β©β© β¨β
,β¨β
β©,β¨β¨β
β©β©β© : π
β
= π-set {π} π-elim
β¨β
β© = π-set {π} (Ξ» _ β β
)
β¨β
,β¨β
β©β© = π-set {π {π€} + π {π€}} (cases (Ξ» _ β β
) (Ξ» _ β β¨β
β©))
β¨β¨β
β©β© = π-set {π} Ξ» _ β β¨β
β©
β¨β
,β¨β
β©,β¨β¨β
β©β©β© = π-set {π {π€} + π {π€} + π {π€}} (cases (Ξ» _ β β
) (cases (Ξ» _ β β¨β
β©) Ξ» _ β β¨β¨β
β©β©))
Β¬xββ
: {x : π} β x β β
β π
Β¬xββ
xββ
= β₯β₯-rec π-is-prop prβ (from-β-of-π-set xββ
)
Example-17-i : is-transitive-set β
Example-17-i u v uββ
vβu = π-elim (Β¬xββ
uββ
)
Example-17-ii : is-transitive-set β¨β
β©
Example-17-ii u v uββ¨β
β© vβu =
β₯β₯-rec β-is-prop-valued
(Ξ» (_ , β
οΌu) β π-elim (Β¬xββ
(transport (v β_) (β
οΌu β»ΒΉ) vβu)))
(from-β-of-π-set uββ¨β
β©)
Example-17-iii : is-transitive-set β¨β
,β¨β
β©β©
Example-17-iii u v uββ¨β
,β¨β
β©β© vβu =
β₯β₯-rec β-is-prop-valued
(Ξ» { (inl _ , β
οΌu) β π-elim (Β¬xββ
(transport (v β_) (β
οΌu β»ΒΉ) vβu))
; (inr _ , β¨β
β©οΌu) β β₯β₯-rec β-is-prop-valued
(Ξ» (_ , β
οΌv) β to-β-of-π-set β£ inl _ , β
οΌv β£)
(from-β-of-π-set (transport (v β_) (β¨β
β©οΌu β»ΒΉ) vβu))
})
(from-β-of-π-set uββ¨β
,β¨β
β©β©)
Example-17-iv : is-transitive-set β¨β
,β¨β
β©,β¨β¨β
β©β©β©
Example-17-iv u v uββ¨β
,β¨β¨β
β©β©β© vβu =
β₯β₯-rec β-is-prop-valued
(Ξ» { (inl _ , β
οΌu) β π-elim (Β¬xββ
(transport (v β_) (β
οΌu β»ΒΉ) vβu))
; (inr (inl _) , β¨β
β©οΌu) β β₯β₯-rec β-is-prop-valued
(Ξ» (_ , β
οΌv) β to-β-of-π-set β£ inl _ , β
οΌv β£)
(from-β-of-π-set (transport (v β_) (β¨β
β©οΌu β»ΒΉ) vβu))
; (inr (inr _) , β¨β¨β
β©β©οΌu) β β₯β₯-rec β-is-prop-valued
(Ξ» (_ , β¨β
β©οΌv) β to-β-of-π-set β£ inr (inl _) , β¨β
β©οΌv β£)
(from-β-of-π-set (transport (v β_) (β¨β¨β
β©β©οΌu β»ΒΉ) vβu))
})
(from-β-of-π-set uββ¨β
,β¨β¨β
β©β©β©)
Example-17-v : is-transitive-set β¨β¨β
β©β© β π {π€}
Example-17-v transitive-β¨β¨β
β©β© =
β₯β₯-rec π-is-prop (Ξ» (_ , β¨β
β©οΌβ
) β Β¬β
οΌβ¨β
β© β¨β
β©οΌβ
) (from-β-of-π-set β
ββ¨β¨β
β©β©)
where
β
ββ¨β¨β
β©β© : β
β β¨β¨β
β©β©
β
ββ¨β¨β
β©β© = transitive-β¨β¨β
β©β© β¨β
β© β
(to-β-of-π-set β£ _ , refl β£) (to-β-of-π-set β£ _ , refl β£)
Β¬β
οΌβ¨β
β© : β¨β
β© οΌ β
β π {π€}
Β¬β
οΌβ¨β
β© β¨β
β©οΌβ
= Β¬xββ
{β
} (transport (β
β_) β¨β
β©οΌβ
(to-β-of-π-set β£ _ , refl β£))
Definition-18 : π β π€ βΊ Μ
Definition-18 = is-set-theoretic-ordinal
Lemma-19 : {x : π} β is-set-theoretic-ordinal x
β {y : π}
β y β x β is-set-theoretic-ordinal y
Lemma-19 = being-set-theoretic-ordinal-is-hereditary
Definition-20 : {A : π€ Μ} {B : π₯ Μ} {X : π£ Μ} β (A β X) β (B β X) β π€ β π₯ β π£ Μ
Definition-20 = _β_
Definition-21 : π€ βΊ Μ
Definition-21 = π
Definition-22 : π β π β π€ βΊ Μ
Definition-22 = _β_
Definition-23 : π β π β π€ βΊ Μ
Definition-23 = _β_
Lemma-24-i : (x y : π) β (x οΌ y) β (x β y Γ y β x)
Lemma-24-i x y = (Ξ» x=y β οΌ-to-β x=y , οΌ-to-β (x=y β»ΒΉ))
, (Ξ» (p , q) β β-extensionality x y p q)
Lemma-24-ii : {π£ : Universe} (P : π β π£ Μ )
β ((x : π) β is-prop (P x))
β ((x : π) β ((y : π) β y β x β P y) β P x)
β (x : π) β P x
Lemma-24-ii = β-induction
Definition-25 : π€ βΊ Μ
Definition-25 = πα΅Κ³α΅
Theorem-26 : OrdinalStructure πα΅Κ³α΅
Theorem-26 = _βα΅Κ³α΅_
, (Ξ» x y β β-is-prop-valued)
, βα΅Κ³α΅-is-well-founded
, βα΅Κ³α΅-is-extensional
, βα΅Κ³α΅-is-transitive
Definition-27 : Ordinal π€ β π
Definition-27 = Ξ¦
Lemma-28-i : (Ξ± Ξ² : Ordinal π€)
β (Ξ± οΌ Ξ²) β (Ξ¦ Ξ± οΌ Ξ¦ Ξ²)
Lemma-28-i Ξ± Ξ² = ap Ξ¦ , Ξ¦-is-left-cancellable Ξ± Ξ²
Lemma-28-ii : (Ξ± Ξ² : Ordinal π€)
β (Ξ± β² Ξ²) β (Ξ¦ Ξ± β Ξ¦ Ξ²)
Lemma-28-ii Ξ± Ξ² = Ξ¦-preserves-strict-order Ξ± Ξ² , Ξ¦-reflects-strict-order Ξ± Ξ²
Lemma-28-iii : (Ξ± Ξ² : Ordinal π€)
β (Ξ± β΄ Ξ²) β (Ξ¦ Ξ± β Ξ¦ Ξ²)
Lemma-28-iii Ξ± Ξ² = Ξ¦-preserves-weak-order Ξ± Ξ² , Ξ¦-reflects-weak-order Ξ± Ξ²
Lemma-29 : Ordinal π€ β πα΅Κ³α΅
Lemma-29 = Ξ¦α΅Κ³α΅
Definition-30 : π β Ordinal π€
Definition-30 = Ξ¨
Proposition-32 : Ξ¦α΅Κ³α΅ β Ξ¨α΅Κ³α΅ βΌ id
Proposition-32 = Ξ¨α΅Κ³α΅-is-section-of-Ξ¦α΅Κ³α΅
Theorem-33 : (OO π€ ββ πα΄Όα΄Ώα΄°)
Γ (OO π€ οΌ πα΄Όα΄Ώα΄°)
Theorem-33 = πα΅Κ³α΅-isomorphic-to-Ord
, eqtoidβ (OO π€) πα΄Όα΄Ώα΄° πα΅Κ³α΅-isomorphic-to-Ord
Definition-34 : (x : π) (Ο : is-set-theoretic-ordinal x)
β (π€ βΊ Μ)
Definition-34 = πx ch
Proposition-35 : (x : π) (Ο : is-set-theoretic-ordinal x)
β Ordinal (π€ βΊ)
Proposition-35 = πxα΅Κ³α΅ ch
Definition-36 : π β π β π€ Μ
Definition-36 = _οΌβ»_
Lemma-37 : {x y : π} β (x οΌβ» y) β (x οΌ y)
Lemma-37 = οΌβ»-β-οΌ
Definition-38 : π β π β π€ Μ
Definition-38 = _ββ»_
Lemma-39 : {x y : π} β x ββ» y β x β y
Lemma-39 = ββ»-β-β
Definition-40 : {A : π€ Μ} (f : A β π)
β (A β A β π€ βΊ Μ) Γ (π€ βΊ Μ)
Γ (A β A β π€ Μ) Γ (π€ Μ)
Definition-40 f = _~_ f , A/~ f
, _~β»_ f , A/~β» f
Lemma-41 : {A : π€ Μ} (f : A β π)
β (A/~ f β A/~β» f)
Γ (image f β A/~ f)
Lemma-41 f = A/~-β-A/~β» f
, UF.Quotient.set-replacement-construction.image-β-quotient
sq pt f π-is-locally-small π-is-large-set
Definition-42 : {A : π€ Μ} (f : A β π) (Ο : is-set-theoretic-ordinal (π-set f))
β (A/~ f β A/~ f β π€ βΊ Μ)
Γ (A/~β» f β A/~β» f β π€ Μ)
Definition-42 f Ο = _βΊ_ f
, _βΊβ»_ f Ο
Proposition-43 : {A : π€ Μ} (f : A β π) (Ο : is-set-theoretic-ordinal (π-set f))
β Ordinal (π€ βΊ)
Γ Ordinal π€
Proposition-43 f Ο = A/~α΅Κ³α΅ f Ο
, A/~β»α΅Κ³α΅ f Ο
Lemma-44 : {A : π€ Μ} (f : A β π) (Ο : is-set-theoretic-ordinal (π-set f))
β total-spaceα΅Κ³α΅ ch (π-set f) Ο οΌ A/~α΅Κ³α΅ f Ο
Lemma-44 = total-space-is-quotientα΅Κ³α΅
Theorem-45 : {A : π€ Μ} (f : A β π) (Ο : is-set-theoretic-ordinal (π-set f))
β Ξ¨α΅Κ³α΅ (π-set f , Ο) οΌ A/~β»α΅Κ³α΅ f Ο
Theorem-45 = Ξ¨α΅Κ³α΅-is-quotient-of-carrier
Corollary-46 : (x : π) (Ο : is-set-theoretic-ordinal x)
β Ξ¨α΅Κ³α΅ (x , Ο) ββ total-spaceα΅Κ³α΅ ch x Ο
Corollary-46 = Ξ¨α΅Κ³α΅-is-isomorphic-to-total-space ch sq
Definition-47 : (Type β β Type (β-suc β))
Γ ((A : MEWO β) β β¨ A β© β Type β)
Γ (MEWO β β Type β)
Γ Type (β-suc β)
Definition-47 {β = β} = MEWO-structure
, marked
, isCovered
, MEWOcov β
Remark-48 : ((A : MEWO β) β isSet (β¨ A β©))
Γ ((A B : MEWO β) β (A β‘ B) β (A ββ B))
Remark-48 = isSetCarrier
, Ξ» A B β (idtoeqβ A B , UAβ A B)
Example-49 : Ord β MEWOcov _
Example-49 (X ,, _βΊ_ ,, trunc ,, wf ,, ext ,, trans) =
(X , (_βΊ_ , Ξ» _ β Unit , isPropUnit) , trunc , ext , wf) ,
(Ξ» x β β£ x , tt , ReflTransCl.done β£)
Definition-50 : ((A : MEWO β)(B : MEWO β') (f : β¨ A β© β β¨ B β©) β Type _)
Γ (MEWO β β MEWO β' β Type _)
Γ (MEWOcov β β MEWOcov β β Type β)
Definition-50 = isSimulation
, _β€_
, _β€c_
Lemma-51-i : (A : MEWO β)(B : MEWO β') β (f : β¨ A β© β β¨ B β©)
β isSimulation A B f β {x y : β¨ A β©} β f x β‘ f y β x β‘ y
Lemma-51-i = simulationsInjective
Lemma-51-ii : ((A : MEWO β)(B : MEWO β') (f : β¨ A β© β β¨ B β©) β isProp (isSimulation A B f))
Γ ((A : MEWO β)(B : MEWO β') β isProp (A β€ B))
Lemma-51-ii = isPropSimulation
, isPropβ¨β€β©
Lemma-51-iii : (A B : MEWO β) β A β€ B β B β€ A β A β‘ B
Lemma-51-iii = β€Antisymmetry
Lemma-51-iv : (A : MEWO β)(B : MEWO β')(C : MEWO β'') β A β€ B β B β€ C β A β€ C
Lemma-51-iv = β€Trans
Lemma-51-v : isSet (MEWO β)
Lemma-51-v = isSetMEWO
Lemma-51-vi : (A : MEWO β)(B : MEWO β') (f : β¨ A β© β β¨ B β©)
β isSimulationWithExists A B f β isSimulation A B f
Lemma-51-vi = existsSimulationsAreSimulations
Definition-52 : (A : MEWO β) β β¨ A β© β MEWO β
Definition-52 = _β+_
Lemma-53 : (A : MEWO β) β (a : β¨ A β©) β isCovered (A β+ a)
Lemma-53 = initialSegmentsCovered
Definition-54 : (MEWO β β MEWO β' β Type (β-max β β'))
Γ (MEWOcov β β MEWOcov β β Type β)
Definition-54 = _<β»_
, _β€c_
Lemma-55 : WellFounded (_<_ {β = β})
Γ WellFounded (_<c_ {β =Β β})
Lemma-55 = <Wellfounded
, coveredWellfounded
Definition-56 : MEWO β β MEWO β
Definition-56 = markAll
Lemma-57-i : (X : MEWO β) β (x : β¨ X β©) β isSimulation (X β+ x) (markAll X) fst
Lemma-57-i = segment-inclusion-markAll
Lemma-57-ii : (X Y : MEWO β) β X < Y β X β€ markAll Y
Lemma-57-ii = <-to-<-withoutMarking
Lemma-57-iii : (X Y Z : MEWO β) β X < Y β Y < Z β X < markAll Z
Lemma-57-iii = <-transWithoutMarking
Lemma-58 : (A : MEWO β) (x y : β¨ A β©) β (A β+ x) β‘ (A β+ y) β x β‘ y
Lemma-58 = β+Injective
Corollary-59 : (A B : MEWO β) β isProp (A < B)
Corollary-59 = isPropβ¨<β©
Lemma-60 : (A B : MEWO β) (f : β¨ A β© β β¨ B β©) β isMarkingPreserving A B f
β isSimulation A B f β ((a : β¨ A β©) β A β+ a β‘ B β+ f a)
Lemma-60 A B f mpf = simulationsPreserveβ A B f , Ξ» q β preserveββSimulation A B f q mpf
Corollary-61 : (X Y Z : MEWO β) β X < Y β Y β€ Z β X < Z
Corollary-61 = <ββ€-in-<
Definition-62 : ((A B : MEWO β) β (f : (x : β¨ A β©) β marked A x β β¨ B β©) β Type _)
Γ (MEWO β β MEWO β β Type _)
Definition-62 = IsPartialSimulation
, _β€β_
Lemma-63 : ((A B : MEWO β) β
A β€β B β‘
((x : β¨ A β©) β (marked A x) β β₯ Ξ£[ y β β¨ B β© ] (A β+ x β‘ B β+ y) Γ marked B y β₯))
Γ ((A B : MEWO β) β isProp (A β€β B))
Lemma-63 = β€βCharacterisation
, isPropβ¨β€ββ©
Definition-64 : MEWO β β Type (β-suc β)
Definition-64 = isPrincipal
Lemma-65 : (A : MEWO β)
β isCovered A β isPrincipal A
Lemma-65 A = coveredβprincipal A , principalβcovered A
Theorem-66 : isEWO (_<c_ {β =Β β})
Theorem-66 = isEWOβ¨MEWOcovβ©
Definition-67 : ((A : MEWO β) β β¨ A β© β Unit β β¨ A β© β Unit β Type β)
Γ ((A : MEWO β) β β¨ A β© β Unit β hProp β)
Γ ((A : MEWO β) β isCovered A β MEWO β)
Definition-67 = succ-<
, succ-marking
, succ
Lemma-68 : ((A : MEWO β) β (cov : isCovered A) β isCovered (succ A cov))
Γ (MEWOcov β β MEWOcov β)
Lemma-68 = succCovered
, csucc
Definition-69 : (A : Type β) β (A β MEWO β) β MEWO β
Definition-69 = β
Lemma-71 : (A : Type β) (F : A β MEWO β)
β ((a : A) β F a β€ β A F)
Γ ((X : MEWO β) β ((a : A) β F a β€ X) β β A F β€ X)
Lemma-71 A F = β-isUpperBound A F
, β-isLeastUpperBound A F
Lemma-72 : (A : Type β) (F : A β MEWO β)
β ((a : A) β isCovered (F a)) β isCovered (β A F)
Lemma-72 = β-covered
Lemma-74 : V-as-MEWO β β€ MEWOcov-as-MEWO β
Lemma-74 = Ο , Ο-simulation
Lemma-75 : MEWOcov-as-MEWO β β€ V-as-MEWO β
Lemma-75 = Ο , Ο-simulation
Theorem-76 : V-as-MEWO β β‘ MEWOcov-as-MEWO β
Theorem-76 = Vβ‘MEWOcov