How to use Excluded Middle Safely

Andrej Bauer (University of Ljubljana) Danel Ahman (University of Tartu)

Types and Topology A workshop in honour of Martín Escardó's 60th birthday University of Birmingham, UK, 17–18 December 2025

Unsafe use of excluded middle:

Theorem

If excluded middle holds then . . .

This is vacuous in any setting that invalidates excluded middle.

Unsafe use of excluded middle:

Theorem

If excluded middle holds then . . .

This is *vacuous* in any setting that invalidates excluded middle. Similar problem:

Theorem

If all functions are continuous then . . .

This is vacuous in any setting that invalidates the continuity principle.

Unsafe use of excluded middle:

Theorem

If excluded middle holds then . . .

This is *vacuous* in any setting that invalidates excluded middle. Similar problem:

Theorem

If all functions are continuous then . . .

This is vacuous in any setting that invalidates the continuity principle.

How to reason relative to a principle in a foundation that invalidates it?

"For all" vs. "for every instance"

Reasoning principles as universally quantified statements:

LEM $\forall p: \Omega. p \lor \neg p$ LPO $\forall f: 2^{\mathbb{N}}. (\exists n. fn = 1) \lor (\forall n. fn = 0)$ ALPO $\forall x: \mathbb{R}. x \le 0 \lor x > 0$

CT $\forall f : \mathbb{N}^{\mathbb{N}} . \exists n : \mathbb{N} . \forall i . \exists j . T(n, i, j) \land U(j) = f(i)$

AC $\forall R \subseteq A \times B. (\forall a. \exists b. a R b) \Rightarrow \exists f : B^A. \forall a. a R (f a)$

"For all" vs. "for every instance"

Reasoning principles as universally quantified statements:

```
LEM \forall p: \Omega. p \lor \neg p

LPO \forall f: 2^{\mathbb{N}}. (\exists n. fn = 1) \lor (\forall n. fn = 0)

ALPO \forall x: \mathbb{R}. x \le 0 \lor x > 0

CT \forall f: \mathbb{N}^{\mathbb{N}}. \exists n: \mathbb{N}. \forall i. \exists j. T(n, i, j) \land U(j) = f(i)

AC \forall R \subseteq A \times B. (\forall a. \exists b. a R b) \Rightarrow \exists f: B^{A}. \forall a. a R (f a)
```

But a typical proof uses only *instances* of the principle.

"For all" vs. "for every instance"

Reasoning principles as universally quantified statements:

```
LEM \forall p: \Omega. p \lor \neg p

LPO \forall f: 2^{\mathbb{N}}. (\exists n. fn = 1) \lor (\forall n. fn = 0)

ALPO \forall x: \mathbb{R}. x \le 0 \lor x > 0

CT \forall f: \mathbb{N}^{\mathbb{N}}. \exists n: \mathbb{N}. \forall i. \exists j. T(n, i, j) \land U(j) = f(i)

AC \forall R \subseteq A \times B. (\forall a. \exists b. a R b) \Rightarrow \exists f: B^{A}. \forall a. a R (f a)
```

But a typical proof uses only *instances* of the principle.

We could use *schemata*, but such meta-theoretic devices are not easily formalized.

We shall use *modalities* instead.

Oracle modality

An (abstract) **oracle** is a predicate $P: A \rightarrow \Omega$:

- ightharpoonup we ask a question a:A,
- ▶ the oracle assures us, or provides evidence of *P a*.

Oracle modality

An (abstract) **oracle** is a predicate $P : A \rightarrow \Omega$:

- ightharpoonup we ask a question a:A,
- ▶ the oracle assures us, or provides evidence of *P a*.

Examples:

- excluded middle oracle dec : $\Omega \to \Omega$ with dec $s := s \vee \neg s$,
- ▶ classical oracle for $S \subseteq \mathbb{N}$ is $\lambda n : \mathbb{N}$. $(n \in S \lor n \notin S)$.

Oracle modality

An (abstract) **oracle** is a predicate $P : A \rightarrow \Omega$:

- ightharpoonup we ask a question a:A,
- the oracle assures us, or provides evidence of *P a*.

Examples:

- excluded middle oracle dec : $\Omega \to \Omega$ with dec $s := s \vee \neg s$,
- ▶ classical oracle for $S \subseteq \mathbb{N}$ is $\lambda n : \mathbb{N}$. $(n \in S \lor n \notin S)$.

Define the **oracle modality** $\mathbb{O}_P : \Omega \to \Omega$ inductively as:

$$\mathfrak{O}_P s := s \vee \exists a : A. (P a \Longrightarrow \mathfrak{O}_P s).$$

"Prove s or ask a: A and proceed upon oracle answering Pa."

Construction of \mathbb{O}_P

In a topos we may construct \mathbb{O}_P as the least fixed-point of $r \mapsto (s \vee \exists a : A. Pa \Rightarrow r)$:

$$\mathfrak{G}_{P} s := \forall r : \Omega. (s \Rightarrow r) \Rightarrow (\forall a : A. (P a \Rightarrow r) \Rightarrow r) \Rightarrow r.$$

Construction of \mathbb{O}_P

In a topos we may construct \mathcal{O}_P as the least fixed-point of $r \mapsto (s \vee \exists a : A. Pa \Rightarrow r)$:

$$\mathfrak{G}_{P}s := \forall r : \Omega. (s \Rightarrow r) \Rightarrow (\forall a : A. (Pa \Rightarrow r) \Rightarrow r) \Rightarrow r.$$

In type theory, \mathfrak{O}_P is a higher-inductive type with constructors:

- ▶ prove : $s \rightarrow \mathfrak{O}_P s$,
- ▶ ask : $(a:A) \rightarrow (Pa \rightarrow \bigcirc_P s) \rightarrow \bigcirc_P s$,
- propositional truncation.

$$s \le t \Rightarrow \mathfrak{O}_P s \le \mathfrak{O}_P t$$
 and $s \le \mathfrak{O}_P s = \mathfrak{O}_P (\mathfrak{O}_P s)$.

► The modality laws hold:

$$s \le t \Rightarrow \mathcal{O}_P s \le \mathcal{O}_P t$$
 and $s \le \mathcal{O}_P s = \mathcal{O}_P (\mathcal{O}_P s)$.

▶ \mathfrak{O}_P is the least modality $j: \Omega \to \Omega$ such that $\forall a: A. j (Pa)$.

$$s \le t \Rightarrow \mathcal{O}_P s \le \mathcal{O}_P t$$
 and $s \le \mathcal{O}_P s = \mathcal{O}_P (\mathcal{O}_P s)$.

- ▶ \mathfrak{O}_P is the least modality $j: \Omega \to \Omega$ such that $\forall a: A. j (Pa)$.
- ▶ $\mathfrak{O}_P \leq \mathfrak{O}_Q$ if, and only if, $\forall a : A . \mathfrak{O}_Q(Pa)$.

$$s \le t \Rightarrow \mathcal{O}_P s \le \mathcal{O}_P t$$
 and $s \le \mathcal{O}_P s = \mathcal{O}_P (\mathcal{O}_P s)$.

- ▶ \mathfrak{O}_P is the least modality $j: \Omega \to \Omega$ such that $\forall a: A. j (Pa)$.
- ▶ $\mathfrak{O}_P \leq \mathfrak{O}_Q$ if, and only if, $\forall a : A . \mathfrak{O}_Q(Pa)$.
- ▶ If $\neg P a$ for some a : A then $\mathfrak{O}_P = \lambda$. \top is trival.

$$s \le t \Rightarrow \mathfrak{O}_P s \le \mathfrak{O}_P t$$
 and $s \le \mathfrak{O}_P s = \mathfrak{O}_P (\mathfrak{O}_P s)$.

- ▶ \mathfrak{O}_P is the least modality $j: \Omega \to \Omega$ such that $\forall a: A. \ j\ (P\ a)$.
- ▶ $\mathfrak{O}_P \leq \mathfrak{O}_Q$ if, and only if, $\forall a : A . \mathfrak{O}_Q(Pa)$.
- ▶ If $\neg P a$ for some a : A then $\mathfrak{G}_P = \lambda$ _. \top is trival.
- ▶ \mathfrak{O}_P may be non-trivial even if $\neg \forall a : A. Pa$ holds:
 - ▶ Define lpo : $2^{\mathbb{N}} \to \Omega$ with lpo $f := (\exists n. fn = 1) \lor (\forall n. fn = 0)$.
 - ► The effective topos validates $\neg \forall f : 2^{\mathbb{N}}$. Ipo f.
 - $\mathbb{O}_{\mathsf{lpo}} \varphi$ means " φ is realized relative to the Halting oracle".

A couple of theorems

Theorem

Every modality is an oracle modality.

Proof. Modality $j: \Omega \to \Omega$ equals \mathfrak{O}_P for $P: (\sum (s:\Omega).\ j.s) \to \Omega, P(s,_) := s.$

A couple of theorems

Theorem

Every modality is an oracle modality.

Proof. Modality $j: \Omega \to \Omega$ equals \mathfrak{O}_P for $P: (\sum (s:\Omega).\ j.s) \to \Omega, P(s,_) := s.$

Theorem

Let $P_i: A_i \to \Omega$ be a family of oracles. The supremum of \mathfrak{O}_{P_i} 's is \mathfrak{O}_Q where $Q: (\sum (i:I). A_i) \to \Omega$ with $Q(i,a) := P_i a$.

Open modality vs. oracle modality

- ► For p : Ω the **open modality** $\bigcirc_p : Ω \to Ω$ is $\bigcirc_p s := (p \Rightarrow s)$.
- ► Always $\mathfrak{G}_P \leq \bigcirc_{\forall a: A. Pa}$.

Open modality vs. oracle modality

- ► For p : Ω the **open modality** $\bigcirc_p : Ω \to Ω$ is $\bigcirc_p s := (p \Rightarrow s)$.
- ► Always $\mathfrak{O}_P \leq \bigcirc_{\forall a: A. Pa}$.
- ightharpoonup $\bigcirc_{\forall a:A.Pa} \leq \bigcirc_P$ if, and only if,

$$\mathfrak{O}_P(\exists a_1,\ldots,a_n:A.Pa_1\wedge\cdots\wedge Pa_n\Rightarrow \forall a:A.Pa)$$

Open modality vs. oracle modality

- ► For p : Ω the **open modality** $\bigcirc_p : Ω \to Ω$ is $\bigcirc_p s := (p \Rightarrow s)$.
- ► Always $\mathfrak{O}_P \leq \bigcirc_{\forall a:A.Pa}$.
- ightharpoonup \bigcirc $\forall a: A. Pa \leq \bigcirc$ if, and only if,

$$\mathfrak{G}_P(\exists a_1,\ldots,a_n:A.Pa_1\wedge\cdots\wedge Pa_n\Rightarrow \forall a:A.Pa)$$

We often state $\bigcirc_{\forall a:A.Pa} \varphi$, but then give a proof that factors through $\mathfrak{O}_P \varphi$.

Provocation

In Type Topology library, all proofs of $\bigcirc_{\mathsf{LEM}} \varphi$ factor through $\lozenge_{\mathsf{dec}} \varphi$.

(Where $\operatorname{dec} p := p \vee \neg p$ and $\operatorname{LEM} := \forall p : \Omega. \operatorname{dec} p$.)

Sheaves for oracle modalities (preliminary)

Consider an oracle $P: A \to \Omega$.

The **sheafification** $\operatorname{sh}_P X$ of a type X is the higher-inductive type:

- ▶ ret: $X \to \operatorname{sh}_P X$
- ▶ ask: $\prod (a:A). (Pa \rightarrow \operatorname{sh}_P X) \rightarrow \operatorname{sh}_P X$
- equ: $\prod (a:A)$. $\prod (t:Pa \rightarrow \mathsf{sh}_P X)$. $\prod (u:Pa)$. ask at = tu

Sheaves for oracle modalities (preliminary)

Consider an oracle $P: A \to \Omega$.

The **sheafification** $\operatorname{sh}_P X$ of a type X is the higher-inductive type:

- ▶ ret : $X \rightarrow \operatorname{sh}_P X$
- ▶ ask: $\prod (a:A). (Pa \rightarrow \operatorname{sh}_P X) \rightarrow \operatorname{sh}_P X$
- equ: $\prod (a:A)$. $\prod (t:Pa \rightarrow \mathsf{sh}_P X)$. $\prod (u:Pa)$. ask at = tu

X is an \mathbb{O}_P -sheaf when there is $h : \mathsf{sh}_P X \to X$ satisfying $h(\mathsf{ret}\, x) = x$.

Think of *h* as a *handler* extracting an element from the leaf of a computation tree.

Further & Related Work

Further work:

- ▶ Get the definition of sheaves correct.
- ▶ What about *non-propositional oracles* $P : A \rightarrow \mathsf{Type}$? Example:

choose : Type \rightarrow Type

 $\mathsf{choose}: A \mapsto (\|A\|_{-1} \to A)$

Further & Related Work

Further work:

- Get the definition of sheaves correct.
- ▶ What about *non-propositional oracles* $P : A \rightarrow \mathsf{Type}$? Example:

choose : Type \rightarrow Type

 $\mathsf{choose}: A \mapsto (\|A\|_{-1} \to A)$

Related work:

- ► E. Rijke, M. Shulman, B. Spitters: *Modalities in homotopy type theory*, Logical Methods in Computer Science, January 8, 2020, Volume 16, Issue 1.
- Andrew W. SWan: *Oracle modalities*, arXiv:2406.05818, June 2024.
- Takayuki Kihara: Lawvere-Tierney topologies for computability theorists, Transactions of the American Mathematical Society, Series B, 10 (2023), 48–85.