The "Collatz Problem" of Domain Theory: Is **FS** = **RB**?

Types and Topology: A Workshop in honor of Martín Escardó's 60th birthday

Weng Kin <u>Ho</u> wengkin.ho@nie.edu.sg

National Institute of Education, Nanyang Technological University

17 December 2025

Outline

Introduction

Outline

Introduction

FS, RB, and the open problem

Introduction

FS, RB, and the open problem

Lawson's disc domain as an FS-domain

Outline

Introduction

FS, RB, and the open problem

Lawson's disc domain as an FS-domain

Zou-Li-Guo and the frontier FS = RB

A personal prologue: Martín's 5% rule

 When I was a PhD student in Birmingham some 19 years ago, Martín Escardó brought up the problem:

FS = RB?

A personal prologue: Martín's 5% rule

When I was a PhD student in Birmingham some 19 years ago,
 Martín Escardó brought up the problem:

$$FS = RB$$
?

- His advice (roughly):
 - Spend 95% of your time finishing your thesis.
 - Spend at most 5% of your time playing with this problem.

A personal prologue: Martín's 5% rule

When I was a PhD student in Birmingham some 19 years ago,
 Martín Escardó brought up the problem:

$$FS = RB$$
?

- His advice (roughly):
 - Spend 95% of your time finishing your thesis.
 - Spend at most 5% of your time playing with this problem.
- This talk is my belated 5%:
 now that I have earned my tenure, I can afford to 'waste' time
 intelligently on this Collatz-like puzzle in domain theory.

Why a "Collatz problem" for domain theory?

- Like the Collatz conjecture, a.k.a. 3n + 1-problem¹:
 - Very easy to state.
 - No consensus that current tools are strong enough.
 - Dangerous to one's research time!

 $^{^1}$ https://www.youtube.com/watch?v=5mFpVDpKX7 $\Theta imes imes \mathbb{R} imes imes imes \mathbb{R} imes \mathbb{R$

Why a "Collatz problem" for domain theory?

- Like the Collatz conjecture, a.k.a. 3n + 1-problem¹:
 - Very easy to state.
 - No consensus that current tools are strong enough.
 - Dangerous to one's research time!
- For FS = RB?:
 - 1. Domain theory may simply *not be ready* yet.
 - 2. Anyone who devotes serious time to it risks *wasting* that time.
 - 3. Yet the question is *fundamental*: it compares two core finitary models of continuity in denotational semantics.

Why a "Collatz problem" for domain theory?

- Like the Collatz conjecture, a.k.a. 3n + 1-problem¹:
 - Very easy to state.
 - No consensus that current tools are strong enough.
 - Dangerous to one's research time!
- For FS = RB?:
 - 1. Domain theory may simply *not be ready* yet.
 - 2. Anyone who devotes serious time to it risks *wasting* that time.
 - 3. Yet the question is *fundamental*: it compares two core finitary models of continuity in denotational semantics.
- I will:
 - Recall the key players (FS, RB, Lawson's disc domain),
 - Explain why Lawson's disc domain is FS with some new insight,
 - And indicate how far we are from resolving FS = RB.

Definition (Dcpo)

A poset (P, \leq) is directed complete if every directed subset has a supremum.

A dcpo which has the least element \perp is a pointed dcpo.²

- directed: $D \neq \emptyset$ and $\forall d_1, d_2 \in D$. $\exists d_3 \in D$. $d_1, d_2 \leq d_3$.
- supremum: least upper bound of D (if it exists).

²In this talk, all dcpo's are pointed.

The dcpo of closed discs

Let

$$L := \left\{ D(a, r) := \left\{ x \in \mathbb{R}^2 : d(x, a) \le r \right\} \mid a \in \mathbb{R}^2, r \ge 0 \right\} \cup \left\{ \mathbb{R}^2 \right\}$$

be the collection of all *closed discs* in \mathbb{R}^2 , including degenerate ones $\{a\}$ and the super-huge one \mathbb{R}^2 .

Order *L* by reverse inclusion:

- $\mathbb{R}^2 \supseteq D$ for all $D \in L$ (so \mathbb{R}^2 is bottom);
- $D(a,r) \leq D(b,s)$ iff $D(a,r) \supseteq D(b,s)$.

Then (L, \leq) is a pointed dcpo: directed suprema are given by filtered intersections of discs.

The dcpo of closed discs (geometry)

Introduction

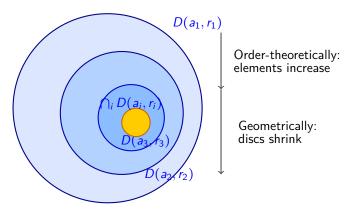


Figure 1: The disc dcpo $(L,\supseteq): D(a,r) \le D(b,s) \iff ||a-b|| + s \le r.$

Domains and the way-below relation

Way-below relation For a dcpo P:

$$y \ll x \iff \forall D \subseteq_{\mathrm{dir}} P. \left(\bigvee^{\uparrow} D \ge x \Longrightarrow \exists d \in D. \ d \ge y\right).$$

Domains and the way-below relation

Way-below relation

For a dcpo P:

$$y \ll x \iff \forall D \subseteq_{\text{dir}} P. \left(\bigvee^{\uparrow} D \ge x \Longrightarrow \exists d \in D. \ d \ge y\right).$$

Definition (Domain = Continuous dcpo)

A subset $B \subseteq P$ is a *basis* of P if for every $x \in P$,

$$B_x := \downarrow x \cap B$$

contains a directed subset with supremum x.

A dcpo is called a *continuous dcpo* or *domain* if it has such a basis.

The Lawson's disc domain

In (L, \leq) ,

$$D(a,r) \ll D(b,s) \iff \operatorname{int}(D(a,r)) \supseteq D(b,s),$$

and $\mathbb{R}^2 \ll D$ for all $D \in L$. Indeed, for any $D \in L$,

$$D = \bigcap^{\downarrow} \{ D' \in L \mid D' \ll D \},$$

which shows that (L, \leq) is a pointed domain, called the *Lawson's* disc domain.

Fact: (L, \leq) is not algebraic: it has not enough compact elements.

Approximate identities

Definition (Approximate identity)

Let P be a dcpo. An approximate identity on P is a directed subset $\mathcal{D} = (\delta_i)_{i \in I}$ of the function space $[P \to P]$ of all Scott-continuous self-maps on P, ordered pointwise, such that

$$\bigvee_{i\in I}^{\uparrow} \delta_i = \mathrm{id}_P,$$

i.e., the pointwise supremum of all $\delta_i \in \mathcal{D}$ is the identity map on P.

FS domains: finitely separating maps

Definition (Finitely separating)

Let P be a dcpo. A Scott-continuous function $\delta: P \to P$ is *finitely* separating if there exists a finite set $F_{\delta} \subseteq P$ such that

$$\forall x \in P. \ \exists y \in F_{\delta}. \ \delta(x) \leq y \leq x.$$

FS domains: finitely separating maps

Definition (Finitely separating)

Let P be a dcpo. A Scott-continuous function $\delta: P \to P$ is *finitely* separating if there exists a finite set $F_{\delta} \subseteq P$ such that

$$\forall x \in P. \exists y \in F_{\delta}. \delta(x) \leq y \leq x.$$

Definition (Finitely separated dcpo)

A dcpo P is *finitely separated* if it has an approximate identity $\mathcal{D} \subseteq [P \to P]$ consisting entirely of finitely separating maps.

FS domains: finitely separating maps

Definition (Finitely separating)

Let P be a dcpo. A Scott-continuous function $\delta: P \to P$ is *finitely* separating if there exists a finite set $F_{\delta} \subseteq P$ such that

$$\forall x \in P. \exists y \in F_{\delta}. \delta(x) \leq y \leq x.$$

Definition (Finitely separated dcpo)

A dcpo P is *finitely separated* if it has an approximate identity $\mathcal{D} \subseteq [P \to P]$ consisting entirely of finitely separating maps.

Theorem

Every finitely separated dcpo is continuous, henceforth called an FS domain.

RB and FS in the domain zoo

Class	Key Property	Intuitive Idea
Bifinite	Has an approximate identity of idempotent deflations (δ_i) with finite image	$K(P) = \bigcup_i \delta_i[P].$
RB	Has an approximate identity of deflations (δ_i) with finite image	Retracts of bifinite domains $(\delta_i \text{ not necessarily idempotent})$
FS	Has an approximate identity of finitely separating maps δ	Separation by a finite set F_{δ}
Domain	≪ is approximating	Directed approximations

AlgFS = B and Dom = RAlg

• **Fact**: every continuous domain is a Scott-continuous retract of an algebraic domain:

Dom = RAIg.

AlgFS = B and Dom = RAlg

 Fact: every continuous domain is a Scott-continuous retract of an algebraic domain:

Gierz et al. (Prop. II-2.20):

Theorem

For a dcpo P, the following are equivalent:

- 1. P is an algebraic FS domain.
- 2. *P* is an algebraic domain and has an approximate identity consisting of maps with finite image.
- 3. P has an approximate identity of idempotent deflations with finite image, i.e., P is bifinite.

So

B = AlgFS.

The open problem (35 years!)

Because

Dom =
$$RAlg$$
 and $B = AlgFS$

one asks:

Open Problem (ca. 35 years)

Is
$$|FS = RAIgFS = RB|$$
?

The open problem (35 years!)

Because

one asks:

Open Problem (ca. 35 years)

Is
$$FS = RAIgFS = RB$$
?

- No counterexample known.
- No general proof known.
- Lawson's disc domain is a natural test case.

Lawson's disc domain as a test case

In Section 4.2.2 of [2], Achim Jung concluded with a concrete example of an FS-domain, due to Jimmie Lawson ([5]).

Lawson's disc domain as a test case

In Section 4.2.2 of [2], Achim Jung concluded with a concrete example of an FS-domain, due to Jimmie Lawson ([5]). It was (and still is) a *likely candidate* for an FS-domain that is not RB.

It is none other than the Lawson disc domain L.

Lawson's approximate identity on L

Let L denote the Lawson disc domain.

For each $\varepsilon > 0$, define $f_{\varepsilon} : L \to L$ by

$$f_{\varepsilon}(D) = \begin{cases} D(a, r + \varepsilon) & \text{if } D = D(a, r) \subseteq B\left(0, \frac{1}{\varepsilon}\right); \\ \mathbb{R}^2 & \text{otherwise.} \end{cases}$$

Lawson's approximate identity on L

Let L denote the Lawson disc domain.

For each $\varepsilon > 0$, define $f_{\varepsilon} : L \to L$ by

$$f_{\varepsilon}(D) = \begin{cases} D(a, r + \varepsilon) & \text{if } D = D(a, r) \subseteq B\left(0, \frac{1}{\varepsilon}\right); \\ \mathbb{R}^2 & \text{otherwise.} \end{cases}$$

Interpretation: for small discs strictly inside $B(0, 1/\varepsilon)$, we *inflate* the radius by ε ; for all others we collapse to \mathbb{R}^2 (the bottom of L).

Why naive definition will not give FS

Consider the functions of the form

$$g_{\varepsilon}(D) = \begin{cases} D(a,r) & \text{if } D = D(a,r) \subseteq B\left(0,\frac{1}{\varepsilon}\right); \\ \mathbb{R}^2 & \text{otherwise.} \end{cases}$$

(without inflation).

- They also form an approximating identity on L.
- But they fail to be finitely separating:
 - We would need a finite separating set F_ε working for uncountably many pairs D(a, r) ≤ D(a, r).
 - This is impossible.

Why naive definition will not give FS

Consider the functions of the form

$$g_{\varepsilon}(D) = \begin{cases} D(a,r) & \text{if } D = D(a,r) \subseteq B\left(0,\frac{1}{\varepsilon}\right); \\ \mathbb{R}^2 & \text{otherwise.} \end{cases}$$

(without inflation).

- They also form an approximating identity on L.
- But they fail to be finitely separating:
 - We would need a finite separating set F_ε working for uncountably many pairs D(a, r) ≤ D(a, r).
 - This is impossible.
- Moral: to get finite separation, we must use a robust gap:

$$D(a,r) \subseteq m_D \subseteq D(a,r+\varepsilon)$$

that persists under small perturbations of the disc.

Robustness via S_{ε}

Demarcate the region where f_{ε} inflates discs:

$$S_{\varepsilon} \coloneqq \{B(c,r) : \|c\| + r < 1/\varepsilon\}.$$

Thus, S_{ε} consists of discs lying strictly inside the open ball $B\left(0,\frac{1}{\varepsilon}\right)$.

Robustness via S_{ε}

Demarcate the region where f_{ε} inflates discs:

$$S_{\varepsilon} := \{B(c,r) : \|c\| + r < 1/\varepsilon\}.$$

Thus, S_{ε} consists of discs lying strictly inside the open ball $B\left(0,\frac{1}{\varepsilon}\right)$.

Lemma (Uniform Robustness)

Fix $\varepsilon > 0$. For each $D_p = B(c_0, r_0) \in S_{\varepsilon}$ define

$$m_{D_p} := B\Big(c_0, r_0 + \frac{\varepsilon}{2}\Big).$$

Then with $\delta_{\varepsilon} := \varepsilon/4$ the following holds: For any $D_p, D_q \in S_{\varepsilon}$ with parameter triples $p = (c_0, r_0)$ and q = (c, r) satisfying $||q - p|| < \delta_{\varepsilon}$ in \mathbb{R}^3 , we have

$$f_{\varepsilon}(D_q) \leq m_{D_p} \leq D_q$$
.

Uniform robustness: picture

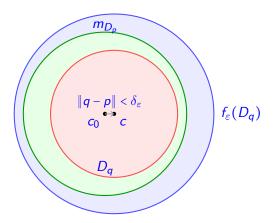


Figure 2: Uniform robustness: $D_q \subseteq m_{D_q} \subseteq f_{\varepsilon}(D_q)$.

Total boundedness of the parameter set

The parameter set of discs in S_{ε} is

$$K_{\varepsilon} \coloneqq \{(c,r) : \|c\| + r < 1/\varepsilon\},$$

which lies in the compact box

$$T_{\varepsilon} := \{(c, r) : ||c|| \le 1/\varepsilon, \ 0 \le r \le 1/\varepsilon\} \subseteq \mathbb{R}^3.$$

Total boundedness of the parameter set

The parameter set of discs in S_{ε} is

$$K_{\varepsilon} := \{(c,r) : \|c\| + r < 1/\varepsilon\},$$

which lies in the compact box

$$T_{\varepsilon} := \{(c,r) : ||c|| \le 1/\varepsilon, \ 0 \le r \le 1/\varepsilon\} \subseteq \mathbb{R}^3.$$

Thus K_{ε} is totally bounded; for $\delta_{\varepsilon} = \varepsilon/4$ there exist finitely many points

$$p_1,\ldots,p_k\in K_{\varepsilon}$$

such that every $q \in K_{\varepsilon}$ is within δ_{ε} of some p_i .

Finite separation using robustness + total boundedness

For each
$$j$$
 define $m_j := m_{D_{p_j}} = B\left(c_j, r_j + \frac{\varepsilon}{2}\right)$.

Proposition

Let $M_{\varepsilon} := \{\mathbb{R}^2, m_1, \dots, m_k\}$. Then for every $D \in L$ there exists $m \in M_{\varepsilon}$ with

$$f_{\varepsilon}(D) \leq m \leq D$$
.

- If $D \notin S_{\varepsilon}$ then $f_{\varepsilon}(D) = \mathbb{R}^2$ and $m = \mathbb{R}^2$ works.
- If $D \in S_{\varepsilon}$ then its parameter $q \in K_{\varepsilon}$ is within δ_{ε} of some p_j , and Uniform Robustness yields $f_{\varepsilon}(D) \leq m_j \leq D$.

Hence each f_{ε} is finitely separated.

What remains annoyingly open

- We have seen:
 - Lawson's disc domain *L* is a continuous domain.
 - The Lawson maps f_{ε} form an approximate identity.
 - Each f_{ε} is finitely separated (via robustness + total boundedness).
 - Hence L is an FS-domain.

What remains annoyingly open

- We have seen:
 - Lawson's disc domain *L* is a continuous domain.
 - The Lawson maps f_{ε} form an approximate identity.
 - Each f_{ε} is finitely separated (via robustness + total boundedness).
 - Hence L is an FS-domain.
- It is still not known whether L is an RB-domain.
- If *L* were *not* RB, it would settle **FS** # **RB**.
- If L were RB, we would need to search for another "Collatz–like" example.

What we already know (Zou-Li-Guo, 2018)

• Each finitely separating $\delta: P \to P$ can, by the Axiom of Choice, be represented by a function $f_{\delta}: P \to P$ with *finite image* such that

$$\forall x \in P. \ \delta(x) \le f_{\delta}(x) \le x.$$

- If f_{δ} is additionally *order-preserving*, then δ is called **super finitely** separating (SFS).
- **Theorem.** A dcpo *P* is an **RB-domain** iff it admits an approximate identity consisting of SFS maps.

The problem FS = RB reduces to bridging FS and SFS.

The current frontier of the FS = RB problem

• After Zou–Li–Guo, the problem is purely **order-theoretic**:

$$FS = RB$$

if and only if

every f.s. map admits a monotone finite-image refinement.

Known coincidences:

Domain class	FS	RB coincide?
Algebraic	\checkmark	√
L-domain	\checkmark	\checkmark
(dual) Consistent join-semilattice	\checkmark	\checkmark
General continuous dcpo	\checkmark	?

• In general, no known way to enforce monotonicity without losing finiteness or continuity.

Possible lines of attack

- 1. Prove or disprove that the Lawson approximating identity $(f_{\varepsilon})_{\varepsilon>0}$ can admit a monotone finite-image refinement.
- 2. Suppose (L, \leq) is an RB with an approximating identity comprising SFS maps. Relate these with the existing $(f_{\varepsilon})_{\varepsilon>0}$ and get a contradiction, possibly a geometric one.
- 3. Develop a completely new set of tools.

Closing thoughts: a Collatz-style open problem

- We now understand **FS** = **RB** ε -better than 35 years ago:
 - FS-ness of L can be justified through a certain robustness condition.
 - RB is characterised by *super* finitely separating maps.
 - We know many positive coincidence results (algebraic, L-domains, etc.).

Closing thoughts: a Collatz-style open problem

- We now understand **FS** = **RB** ε -better than 35 years ago:
 - FS-ness of L can be justified through a certain robustness condition.
 - RB is characterised by *super* finitely separating maps.
 - We know many positive coincidence results (algebraic, L-domains, etc.).
- But the core question

FS = RB?

remains stubbornly open.

Closing thoughts: a Collatz-style open problem

- We now understand **FS** = **RB** ε -better than 35 years ago:
 - FS-ness of L can be justified through a certain robustness condition.
 - RB is characterised by *super* finitely separating maps.
 - We know many positive coincidence results (algebraic, L-domains, etc.).
- But the core question

$$FS = RB$$
?

remains stubbornly open.

Perhaps domain theory is still not ready.
 Perhaps we need new tools.
 In the meantime, this problem serves as our Collatz: a warning label on how we spend our mathematical time.

References I

- A. Jung, The classification of continuous domains, Proceedings of the 5th Annual IEEE Symposium on Logics in Computer Science, pp. 35–40, 1990.
- S. Abramsky and A. Jung, *Domain Theory*, in S. Abramsky, D. Gabbay, and T. Maibaum (eds.), Handbook of Logic in Computer Science, Vol. 3 (Clarendon Press, Oxford, 1994).
- G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, and D. Scott, *Continuous Lattices and Domains*, Encyclopedia of Mathematics and its Applications No. 93 (Cambridge University Press, 2003).
- J. Goubault-Larrecq, *Non-Hausdorff Topology and Domain Theory*, New Mathematical Monographs No. 22 (Cambridge University Press, 2013).

References II

J. Lawson, Metric Spaces and FS-domains, *Theoretical Computer Science*, 405(1–2), 73–74, 2008.

Z. Zou, Q. Li, and L. Guo, A note on the problem when FS-domains coincide with RB-domains, *Categories and General Algebraic Structures with Applications*, 8(1), 51–59, 2018.

Algebraic domains (backup)

Definition (Compact elements)

An element x of a dcpo P is *compact* if $x \ll x$.

The collection of all compact elements of P is denoted by K(P).

Definition (Algebraic domains)

A dcpo P is an algebraic domain if it has K(P) as a basis.

Example & Non-example

- 1. The powerset lattice $(\mathbb{P}(X), \subseteq)$ is algebraic.
- 2. The Lawson's disc domain (L, \supseteq) is **not** algebraic.

Continuous = R-Algebraic (backup)

Definition (Scott-continuous retraction)

Let P and Q be dcpo's, and Scott-continuous mappings between them

$$P \xrightarrow{s} Q$$

such that $r \circ s = id_P$.

We call $r: Q \longrightarrow P$ a *Scott-continuous retraction*, and P is a (Scott-continuous) *retract* of Q.

Theorem

Every continuous domain is the retract of an algebraic domain, i.e.,

Flat natural numbers is bifinite (backup)

The sequence, $(\delta_k(N))_{k \in \mathbb{N}}$, of finite posets has bilimit $N = \mathbb{N}_{\perp}$.

Figure 3: *N* is bifinite.

A simple FS example on [0,1] (backup)

Consider the unit interval [0,1] with the usual order \leq . For each $\epsilon > 0$, the function

$$f_{\epsilon}(x) \coloneqq \max\{x - \epsilon, 0\}$$

is finitely separated from the identity map $id_{[0,1]}$. Of course, $([0,1],\leq)$ being a bc-domain must be FS.

Proof of Uniform Robustness (backup)

Proof.

As usual,
$$B(c_1, r_1) \subseteq B(c_2, r_2)$$
 iff $||c_1 - c_2|| + r_1 \le r_2$.
If $||q - p|| < \delta_{\varepsilon}$ then $||c - c_0|| < \delta_{\varepsilon}$ and $||r - r_0|| < \delta_{\varepsilon}$. Thus

$$\|c-c_0\|+r\leq r_0+2\delta_\varepsilon=r_0+2\cdot\frac{\varepsilon}{4}=r_0+\frac{\varepsilon}{2}$$

showing $D_q \subseteq m_{D_p}$.

Since $D_q \in S_{\varepsilon}$, we have $f_{\varepsilon}(D_q) = B(c, r + \varepsilon)$. Also

$$\|c-c_0\|+\left(r_0+\frac{\varepsilon}{2}\right)\leq \delta_{\varepsilon}+r_0+\frac{\varepsilon}{2}\leq \left(r+\frac{\varepsilon}{4}\right)+\frac{3\varepsilon}{4}=r+\varepsilon,$$

establishing $m_{D_p} \subseteq f_{\varepsilon}(D_q)$.

