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Our aim and motivation

Develop domain theory, but constructively and predicatively in
Univalent Foundations.

Why Univalent Foundations?
Implemented in proof assistants
Constructive and predicative by default
Novel and natural interpretation of mathematical equality
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We could also extend our foundations with more higher inductive types,
but so far, we haven’t had any need for it.

By developing domain theory constructively in UF, we have also improved
our understanding of the foundations themselves.

Further, domain theory serves as a testing ground for (formalisation in)
UF.
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Univalent Foundations

Univalent Foundations

Intensional Martin-Löf Type Theory with:
extensionality axioms
propositional truncation

Vladimir Voevodsky

Notation:
For x, y : X, write x = y for IdX(x, y).
Use ≡ for judgemental equality.
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I will assume some familiarity with dependent type theory, e.g.
Π,Σ,+-types.

Specifically, we need function extensionality (pointwise equal functions are
equal) and propositional extensionality (logically equivalent propositions
are equivalent) (and sometimes, univalence).

I will explain the propositional truncation shortly.
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Univalent Foundations

Subsingletons and sets

Definition
A type X is a subsingleton (or proposition) if we have an element of

is-a-prop(X) :≡
∏
x:X

∏
y:X

x = y.

Definition
A type X is a set if we have an element of

is-a-set(X) :≡
∏
x:X

∏
y:X

is-a-prop(x = y).
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There is a stratification of types in terms of the complexity of their
identity types: Voevodsky’s hlevels or truncation levels.

For this talk, we only need to consider two hlevels: the subsingletons and
sets.

In a subsingleton, all elements are identified/equal. There is at most one
element (up to =).
In a set, elements are identified/equal in at most one way.
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Univalent Foundations

Propositional truncation

For every type X, there is a proposition ‖X‖ and a map X → ‖X‖, such
that every map from X to a proposition P factors through it.

X P

‖X‖
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Borrowing terminology from category theory, we might call propositional
truncation subsingleton reflection.

The dashed map is necessarily unique, because of function extensionality
and the fact that P is a subsingleton.

The propositional truncation does not erase witnesses. (For instance: if
A is a decidable predicate (i.e. proposition-valued family) on N, then we
have maps:∥∥∥∥∥∑
n:N

A(n)

∥∥∥∥∥→∑
k:N

(k is the least n : N such that A(n) holds)→
∑
n:N

A(n),

where the first map exists, because the second type may be shown to be
a proposition and because A is decidable.)
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Univalent Foundations

What about the univalence axiom?

The univalence axiom is an extensionality axiom for type universes.
It implies function and propositional extensionality.
Univalent Foundations is about much more than the univalence
axiom!

Tom de Jong (University of Birmingham) Constructive domain theory in UF 8 April, 2020 8 / 28

We usually do not need full univalence, because the types under consider-
ation are all propositions and sets (dcpos).

Arguably, univalent type theory is much more about the concept of trun-
cation levels than about the univalence axiom.
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Constructivity and predicativity

Constructivity

Definition
Excluded middle (EM) in UF: P + ¬P for all propositions P .

Definition
Bishop’s Limited Principle of Omniscience (LPO):

∏
α:N→2

((∏
n:N

α(n) = 0
)

+
(∑
k:N

k is least with α(k) = 1
))

.

EM implies LPO.
LPO and EM are constructive taboos: they cannot be proved or
disproved constructively.
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Constructivity and predicativity

Predicativity in Univalent Foundations
Impredicativity
The type of propositions in a universe U

ΩU :≡
∑
P :U

is-a-prop(P )

is (essentially) small, i.e. has an (equivalent) copy in U .

Theorem
EM implies Impredicativity.

Proof.
With EM, there are only two propositions: 0 and 1, so ΩU ' 2 : U .

Tom de Jong (University of Birmingham) Constructive domain theory in UF 8 April, 2020 11 / 28

Here ' refers to Voevodsky’s notion of (type) equivalence.
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Domain theory (classically)

Domain theory (classically)
Domain theory is a branch of order theory with applications in

semantics of programming languages
topology

Dana S. Scott
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Domain theory was pioneered by Dana Scott [Sco72; Sco93] and developed
further by many others: Plotkin [Plo83], Lawson, Keimel, Abramsky, Jung
[AJ94], Simpson and Escardó, just to name a few.

Order theory studies partially ordered sets (posets).
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Domain theory (classically)

Basic objects in domain theory

Definition
A poset (P,≤) is directed if it is non-empty and for every x, y ∈ P , there
exists some z ∈ P such that x ≤ z and y ≤ z.

Tom de Jong (University of Birmingham) Constructive domain theory in UF 8 April, 2020 14 / 28

For some (computational) intuition: think of a directed set as a set of
approximations (or computations). Given two approximations, we can
find a better one.
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For some (computational) intuition: think of a directed set as a set of
approximations (or computations). Given two approximations, we can
find a better one.

In a dcpo, we require that all approximations converge to a value (the least
upper bound).
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Predicative dcpos in UF

Predicative dcpos in UF
For predicativity reasons, we use families rather than subsets.

Definition
Let (P,≤) be a poset. A family u : I → P is directed if ‖I‖ and∏
i,j:I‖

∑
k:I ui ≤ uk × uj ≤ uk‖.

Note the use of the propositional truncation.

Fix a universe V of “small” types.

Definition
A V-dcpo is a poset (P,≤) such that every directed family I → P with
I small has a least upper bound in (P,≤).

Tom de Jong (University of Birmingham) Constructive domain theory in UF 8 April, 2020 16 / 28

We use the propositional truncation here:

• to ensure that being directed is property (rather than structure);

• because for i, j : I, there might be many k : I with
ui ≤ uk × uj ≤ uk and we don’t mean to specify a choice.

Similarly, asking for an element of I (rather than ‖I‖) would be asking
for a pointed (rather than an inhabited) type.
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We use the propositional truncation here:

• to ensure that being directed is property (rather than structure);

• because for i, j : I, there might be many k : I with
ui ≤ uk × uj ≤ uk and we don’t mean to specify a choice.

Similarly, asking for an element of I (rather than ‖I‖) would be asking
for a pointed (rather than an inhabited) type.

In a predicative framework, we must be careful about size, which is why
we only ask that directed families indexed by types in a fixed universe have
least upper bounds.
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Scott model of PCF

Scott model of PCF

PCF: typed programming language with a fixed point combinator for
general recursion. PCF types:

type ι for natural numbers
function types

Scott model of PCF: interpret PCF types as dcpos with a least
element that represents non-termination.
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Because of the fixed point combinator, a “standard” set-theoretic inter-
pretation will not work (i.e. one where function types are interpreted as
exponentials in Set).

A map between dcpos (with bottom) is continuous if it preserves directed
suprema. The point is that such maps have fixed points.
The continuous maps between two dcpos with bottom form another dcpo
with bottom with the pointwise ordering. This allows us to interpret the
function types of PCF.
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Scott model of PCF

How to represent the type of natural numbers?

Classically:
0 1 2 3 · · ·

⊥

But,
(N + {⊥} with this order) is a dcpo ⇒ LPO.

So constructively, this is no good.

Tom de Jong (University of Birmingham) Constructive domain theory in UF 8 April, 2020 18 / 28
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Recall that LPO is:

∏
α:N→2

((∏
n:N

α(n) = 0
)

+
(∑
k:N

k is least with α(k) = 1
))

.

Proof of the implication: given α : N→ 2, define β : N→ N + 1 by:

β(n) :≡
{
inl(k) if k is the least number ≤ n such that α(k) = 1;
inr(?) else.

Then β is directed and therefore, if N+1 is directed complete, has a least
upper bound s.
But we can decide if s = inl(k) for some k : N or if s = inr(?). But the
former implies α(k) = 1, while the latter implies

∏
n:N α(n) = 0.
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Scott model of PCF

Lifting
Definition
The lifting of a type X is: L(X) :≡

∑
P :Ω(P → X).

Definition
We can embed a type into its lifting:

ηX : X → L(X)
x 7→ (1, λ(u : 1).x)

Theorem (Knapp, Escardó)
L is monad (on sets) with unit η (modulo size).

There is a distinguished element: ⊥X :≡ (0, from-emptyX) : L(X).

Tom de Jong (University of Birmingham) Constructive domain theory in UF 8 April, 2020 19 / 28
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Note that L (potentially) raises universe levels, so that it is a “monad
across universes”. Moreover, for types that are not sets, this would be
some kind ∞-monad, because it is missing coherence conditions.
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Note that L (potentially) raises universe levels, so that it is a “monad
across universes”. Moreover, for types that are not sets, this would be
some kind ∞-monad, because it is missing coherence conditions.

With Excluded Middle, this is all, i.e. L(X) ' X + 1.
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Scott model of PCF

Definition
The lifting of a type X is: L(X) :≡

∑
P :Ω(P → X).

Definition
Let is-defined : L(X)→ Ω be: (P,ϕ) = P .

Definition
Define a partial order v on L(X) by:

l v m :≡ is-defined(l)→ l = m.

Theorem (Knapp, Escardó)
The pair (L(X),v) is a dcpo if X is a set.
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Scott model of PCF

Soundness and computational adequacy

Using:
(L(N),v) to interpret the PCF type of natural numbers
the monad structure on L

we can define the Scott model of PCF

and prove:
soundness: if a PCF program s computes to a term t, then s and t
are equal in the model;
computational adequacy: if a PCF program t is equal to η(n) with
n : N, then t computes to the term n (that represents n in PCF).

Tom de Jong (University of Birmingham) Constructive domain theory in UF 8 April, 2020 21 / 28
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What is especially nice about having a constructive proof of computational
adequacy is that it allows us run a PCF program once we prove that it is
total, cf. [19, end of Section 7].
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Conclusion and current work
Conclusion
Constructive and predicative domain theory in Univalent Foundations

soundness and computational adequacy of Scott model of PCF using
lifting monad
important use of propositional truncation
formalised in Agda (some in Coq/UniMath)

Current work
X bases of dcpos & continuous and algebraic dcpos
X formalise Scott’s D∞
exponentials for continuous dcpos (e.g. SFP domains)
(predicative version of) Pataraia’s fixed point theorem

The Scott model of PCF in univalent type theory. Nov. 2019.
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Bases for dcpos

A dcpo is continuous if it has a basis that “generates” the whole dcpo.
Predicatively, we need to strengthen the notion of basis.

Examples:
L(X) has a very simple basis: X + 1.
P(X) has the Kuratowski finite subsets of X as a basis.
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In our predicative framework, given a dcpo D, we say that β : B → D is a
basis if, in addition to the usual axioms of a basis, B is small and the way-
below/approximation relation of D is small when restricted to elements of
the form β(b).
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