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Starting question

▶ Exercise in category theory:
The epimorphisms of sets are precisely the surjections.

▶ Question:
What are the epimorphisms of types?

▶ We answer this question in homotopy type theory (HoTT),
where we have higher types.
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Motivation for studying epimorphisms

▶ Epimorphisms are useful because

f is an epi ⇐⇒
A B

X

∀g

f

unique if
it exists

▶ We show that epis of types are closely related to acyclic types.

Classically, acyclic spaces are used in algebraic topology in
▶ Quillen’s plus construction,
▶ the Kan–Thurston theorem, and
▶ the Barratt–Priddy(–Quillen) theorem.

So this leads to interesting synthetic homotopy theory!
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Homotopy type theory (HoTT)

▶ In HoTT, we think of types as spaces.

▶ If we have a type A with points a, b : A, then we may have
identifications p, q : a =A b and higher identifications
α, β : p =a=Ab q, etc.

▶ A type is a set or 0-type if there are no higher identifications.
E.g. N, N→ 2, N→ N, etc. are all 0-types.
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Higher types

▶ The circle S1

Higher inductive type

base : S1

loop : base = base

is a 1-type: its identity types are 0-types. In fact,

(base = base) ≃ Z.

▶ Similarly, we get the notion of a k-type for k ≥ 0.
(Actually, k ≥ −2.)
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Synthetic homotopy theory

▶ Everything we do in HoTT is automatically/necessarily
invariant under homotopy.

▶ This is both a blessing (no need for: “up to...”) and a curse as
it means that some (point-set based) constructions are not
(readily) available in HoTT.

▶ In practice this means we work with universal properties only.
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Epimorphisms and the circle

▶ The terminal map 2→ 1 is an epi of sets, but not of (higher)
types!

▶ Indeed, the type of extensions (dashed) in the diagram

2 S1

1

[base,base]

is described as∑
x :S1

(x = base)× (x = base) ≃ (base = base) ≃ Z,

which has infinitely many elements.
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Epimorphisms in HoTT
▶ In 1-category theory, a morphism f : A→ B is an

epi(morphism) if for every object C and all morphisms
g , h : B → C , we have

(g ◦ f = h ◦ f ) =⇒ (g = h).

In other words, (−) ◦ f is an injection.

▶ We want the epis to be a subtype of the type of functions.
That is,

two epis should be equal iff they are equal as functions.

▶ Def. A map f : A→ B is an epi if the canonical map

(g = h) −→ (g ◦ f = h ◦ f )

is an equivalence for all types C and all maps g , h : B → C .
In other words, (−) ◦ f is an embedding.
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Suspensions and acyclic types
▶ Def. The suspension ΣA of a type A is the pushout

A 1

1 ΣA
⌜

S

N

Higher inductive type

N, S : ΣA
merid : A→ (N = S)

a b

N

S

▶ Ex. The suspension of the circle is the sphere.

▶ Def. A type A is acyclic if ΣA is contractible, i.e. ΣA ≃ 1.

▶ Ex. The unit type is acyclic. More interesting examples later!
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Characterization of epimorphisms
▶ Fact A map f : X → Y is epi w.r.t. sets ⇐⇒ f is surjective.

▶ Surjectivity means: for every y : Y , the fiber of f is inhabited.
That is, we have an element of the propositional truncation of

fibf (y) :=
∑
x :X

f (x) = y .

▶ Fact’ A map f : X → Y is epi w.r.t. sets
⇐⇒ all fibers of f are inhabited.

Theorem
A map f : X → Y is epi (w.r.t. all types) ⇐⇒ all fibers are acyclic.
That is, the suspension of fibf (y) is equivalent to 1 for all y : Y .

a b

N

S
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The results so far

Epis (w.r.t. all types) Epis w.r.t. sets

Maps with acyclic fibers Maps with inhabited fibers
(a.k.a surjections)
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The bigger picture

Epis (w.r.t. all types) Epis w.r.t. k-types

Maps with acyclic fibers Maps with k-acyclic-fibers

▶ Def. A type A is k-acyclic if its suspension is k-connected, i.e.
∥ΣA∥k ≃ 1.

▶ Note: sets are exactly the 0-types and a type is 0-acyclic if
and only if it is inhabited, so we recover the results for sets
and surjections.

▶ We have nice characterizations of k-acyclic types for small k:
1-acyclic ⇐⇒ 0-connected
2-acyclic ⇐⇒ 0-connected and perfect fundamental group

(A group is perfect if it’s equal to its commutator subgroup.)
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Proving the characterization of epimorphisms
▶ Lemma A map f : A→ B is epic if and only if its codiagonal
∇f is an equivalence.

A B

B B +A B

B

⌜

f

f id

id

∇f

▶ Lemma The codiagonal is the fiberwise suspension:

fib∇f (b) ≃ Σ fibf (b).

Proof. By descent the diagram above pulls back to a pushout
of fibers.

▶ Thm. A map is epic if and only if all its fibers are acyclic.
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Towards examples of acyclic types
▶ For building examples of acyclic types (and hence epis) it helps

to be familiar with classifying types/deloopings of groups.

▶ Buchholtz, Rijke and van Doorn showed that there is a
equivalence between the categories of
▶ groups with group homomorphisms,
▶ 0-connected, pointed 1-types with pointed maps.

▶ Given a group G we construct a 0-connected 1-type BG with
a point pt : BG such that we have an isomorphism of groups

Ω BG := (pt = pt) ∼= G .

The group structure on Ω BG is concatenation of paths.

▶ We call BG the classifying type or delooping of G .
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No acyclic sets

▶ Thm. The only 1-acyclic set is the unit type.

▶ Proof. Let G be the free group on an acyclic set A with
inclusion of generators η : A ↪→ G . If A is acyclic, then A→ 1
is an epi, so the constant map

BG → (A→ BG)

is an embedding. Hence, the constant map G → (A→ G) is
an equivalence. Thus, η is constant. But it is also an
embedding, so A must be a subsingleton. Finally, A is also
inhabited, because it is 0-acyclic.
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Hatcher’s 2-dimensional complex

▶ Hatcher’s 2-dimensional complex is an example of a nontrivial
acyclic space.

▶ We import Hatcher’s 2-dimensional complex as a HIT X with
constructors:

pt : X , a, b : ΩX , r : a5 = b3, s : b3 = (ab)2

▶ Prop. The type X has a 0-connected map to BA5, the
classifying type of the alternating group A5.
So X is nontrivial.
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Towards acyclicity of Hatcher’s complex
▶ Def. A Hatcher structure on a pointed type A is given by

identifications
a, b : ΩA, r : a5 = b3, s : b3 = (ab)2.

A Hatcher algebra is a pointed type equipped with a Hatcher
structure. The HIT X is precisely the initial Hatcher algebra.

▶ Lemma Every loop space, pointed at refl, has a unique
Hatcher structure.

▶ Proof. The type of Hatcher structures a loop space ΩA is∑
a,b:Ω2A

(
a5 = b3

)
×

(
b3 = (ab)2

)
.

By Eckmann–Hilton, we have ab = ba, so the last component
is equivalent to b = a2, and can be contracted away to
obtain:

∑
a:Ω2A

(
a5 = a6)

. But, cancelling a5, this is
equivalent to the contractible type

∑
a:Ω2A(a = refl).
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Acyclicity of Hatcher’s complex

▶ Prop. The type X is acyclic.

▶ Proof. For all pointed types Y , we have:

(ΣX →pt Y ) ≃ (X →pt ΩY )
≃ Hatcher-structure(ΩY )
≃ 1.

Thus, ΣX has the universal property of the unit type and
hence must be contractible.

18/26



Higman’s type
▶ Higman’s group is given by the presentation

H := ⟨a, b, c, d | a = [d , a], b = [a, b], c = [b, c], d = [c, d ]⟩,

where [x , y ] is the commutator [x , y ] = xyx−1y−1.

▶ Its classifying type BH is easily described as a HIT with a
point constructor pt : BH, four path constructors
a, b, c, d : Ω BH and four 2-cell constructors for the relations.

▶ Similar to Hatcher’s example, Eckmann–Hilton implies that
BH is acyclic as the commutators become trivial in higher
loop types.

▶ The group can be shown to be nontrivial, but the classical
proof requires combinatorial group theory.
For ≤ 3 generators and relations the presentation yields the
trivial group!
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Nontriviality of Higman’s type

▶ We completely avoid classical combinatorial group theory in
proving that Higman’s type is nontrivial.

▶ Instead, we use tools from higher topos/type theory.

▶ Descent: Interplay between pullbacks and pushouts.

▶ Thm. (Wärn) Given 0-truncated maps of 1-types
A← R → B, the pushout A +R B is again a 1-type and the
inclusion maps are 0-truncated.
Such 0-truncated maps give inclusions on loop spaces/groups.

▶ We can (re)construct BH as a series of such pushout squares.

▶ It also follows that BH is a 1-type: no need to truncate!
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Nontriviality of Higman’s type: proof sketch

▶ We re-express BH as an iterated pushout:

B⟨b⟩ B⟨b, c⟩

B⟨a, b⟩ B⟨a, b, c⟩
⌜

B⟨a, c⟩ B⟨a, b, c⟩

B⟨c, d , a⟩ BH
⌜

Here, each type is the HIT that uses only the constructors of
BH that involve the mentioned generators.
In particular, B⟨b⟩ ≃ S1 and B⟨a, c⟩ ≃ S1 ∨ S1.

▶ By Wärn’s theorem, if the span maps are 0-truncated, then
each generator a, b, c, d has infinite order in BH which must
also be a 1-type.
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Nontriviality of Higman’s type: proof sketch

▶ We consider the left pushout square
B⟨b⟩ B⟨b, c⟩

B⟨a, b⟩ B⟨a, b, c⟩
⌜

▶ The type B⟨a, b⟩ classifies the Baumslag–Solitar group

BS(1, 2) = ⟨a, b | aba−1 = b2⟩,

and is a so-called HNN-extension.
On classifying types this translates to a coequalizer (bottom
left), or equivalently, a pushout square (bottom right):

S1 B⟨b⟩ B⟨a, b⟩
b

b2

S1 + S1 S1

B⟨b⟩ B⟨a, b⟩

∇

[1,2]
⌜

▶ We apply Wärn’s theorem to get that the bottom map is
0-truncated. The other span map can be checked directly.
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Nontriviality of Higman’s type: proof sketch

▶ Consider the other pushout square
B⟨a, c⟩ B⟨a, b, c⟩

B⟨c, d , a⟩ BH⌜

▶ We apply descent in the commutative cube

1

B⟨a⟩ B⟨b⟩ B⟨c⟩

B⟨a, b⟩ B⟨a, c⟩ B⟨b, c⟩

B⟨a, b, c⟩

to get that the front sides are pullbacks. Since the side maps
are 0-truncated, the front map is as well.
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Higman’s type

In summary,

Theorem
Higman’s type BH is an acyclic 1-type in which all four generators
have infinite order.
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Summary

In the presence of higher types, the notion of epimorphism

▶ becomes quite strong,

▶ coincides with the notion of an acyclic map, and

▶ is interesting from the p.o.v. of synthetic homotopy theory.
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Additional and future work
▶ Details and further results (e.g. closure properties) in:

Epimorphisms and Acyclic Types in
Univalent Mathematics
Ulrik Buchholtz, TdJ, Egbert Rijke.
arXiv:2401.14106.
January 2024

▶ Some properties seem to need an additional axiom:
Plus Principle: Every acyclic and simply connected type

is contractible.
It follows from Whitehead’s Principle and was highlighted by
Hoyois in ∞-topos theory.

▶ Do the acyclic maps form an accessible modality?

▶ Use the theory of binate groups to prove acyclicity of some
infinitely presented groups?
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