Epimorphisms and Acyclic Types in Univalent Mathematics

Ulrik Buchholtz¹ Tom de Jong¹ Egbert Rijke²

¹University of Nottingham, UK ²University of Ljubljana, Slovenia

Logic and Semantics Seminar University of Cambridge

1 March 2024

Starting question

Exercise in category theory: The epimorphisms of sets are precisely the surjections.

Question: What are the epimorphisms of types?

We answer this question in homotopy type theory (HoTT), where we have higher types.

Motivation for studying epimorphisms

Epimorphisms are useful because

Motivation for studying epimorphisms

Epimorphisms are useful because

We show that epis of types are closely related to acyclic types.

Classically, acyclic spaces are used in algebraic topology in

- Quillen's plus construction,
- the Kan–Thurston theorem, and
- the Barratt-Priddy(-Quillen) theorem.

So this leads to interesting synthetic homotopy theory!

Homotopy type theory (HoTT)

▶ In HoTT, we think of types as spaces.

If we have a type A with points a, b : A, then we may have identifications p, q : a =_A b and higher identifications α, β : p =_{a=A}b q, etc.

A type is a set or 0-type if there are no higher identifications. E.g. N, N → 2, N → N, etc. are all 0-types.

Higher types

• The circle \mathbb{S}^1

Higher inductive type base : \mathbb{S}^1 loop : base = base

is a 1-type: its identity types are 0-types. In fact,

 $(base = base) \simeq \mathbb{Z}.$

Higher types

```
• The circle \mathbb{S}^1
```

```
Higher inductive type
base : \mathbb{S}^1
loop : base = base
```


is a 1-type: its identity types are 0-types. In fact,

 $(base = base) \simeq \mathbb{Z}.$

Similarly, we get the notion of a k-type for k ≥ 0. (Actually, k ≥ -2.)

Synthetic homotopy theory

- Everything we do in HoTT is automatically/necessarily invariant under homotopy.
- This is both a blessing (no need for: "up to...") and a curse as it means that some (point-set based) constructions are not (readily) available in HoTT.
- In practice this means we work with universal properties only.

Epimorphisms and the circle

- The terminal map $2 \rightarrow 1$ is an epi of sets, but *not* of (higher) types!
- Indeed, the type of extensions (dashed) in the diagram

is described as

 $\sum_{x:\mathbb{S}^1} (x = \mathsf{base}) \times (x = \mathsf{base}) \simeq (\mathsf{base} = \mathsf{base}) \simeq \mathbb{Z},$

which has infinitely many elements.

Epimorphisms in HoTT

In 1-category theory, a morphism f : A → B is an epi(morphism) if for every object C and all morphisms g, h : B → C, we have

 $(g \circ f = h \circ f) \Longrightarrow (g = h).$

In other words, $(-) \circ f$ is an injection.

Epimorphisms in HoTT

In 1-category theory, a morphism f : A → B is an epi(morphism) if for every object C and all morphisms g, h : B → C, we have

$$(g \circ f = h \circ f) \Longrightarrow (g = h).$$

In other words, $(-) \circ f$ is an injection.

 We want the epis to be a subtype of the type of functions. That is,

two epis should be equal iff they are equal as functions.

Epimorphisms in HoTT

In 1-category theory, a morphism f : A → B is an epi(morphism) if for every object C and all morphisms g, h : B → C, we have

 $(g \circ f = h \circ f) \Longrightarrow (g = h).$

In other words, $(-) \circ f$ is an injection.

We want the epis to be a subtype of the type of functions. That is, two epis should be equal iff they are equal as functions.

• <u>Def</u>. A map $f : A \rightarrow B$ is an epi if the canonical map

$$(g = h) \longrightarrow (g \circ f = h \circ f)$$

is an equivalence for all types C and all maps $g, h : B \to C$. In other words, $(-) \circ f$ is an embedding.

Suspensions and acyclic types

• <u>Def</u>. The suspension ΣA of a type A is the pushout

 \blacktriangleright <u>Ex</u>. The suspension of the circle is the sphere.

Suspensions and acyclic types

• <u>Def</u>. The suspension ΣA of a type A is the pushout

<u>Ex</u>. The suspension of the circle is the sphere.

- <u>Def</u>. A type A is acyclic if ΣA is contractible, i.e. $\Sigma A \simeq \mathbf{1}$.
- <u>Ex</u>. The unit type is acyclic. More interesting examples later!

Characterization of epimorphisms

- Fact A map $f : X \to Y$ is epi w.r.t. sets $\iff f$ is surjective.
- Surjectivity means: for every y : Y, the fiber of f is inhabited. That is, we have an element of the propositional truncation of

$$\operatorname{fib}_f(y) := \sum_{x:X} f(x) = y.$$

Characterization of epimorphisms

- Fact A map $f : X \to Y$ is epi w.r.t. sets $\iff f$ is surjective.
- Surjectivity means: for every y : Y, the fiber of f is inhabited. That is, we have an element of the propositional truncation of

$$\operatorname{fib}_f(y) := \sum_{x:X} f(x) = y.$$

▶ <u>Fact</u>' A map $f : X \to Y$ is epi w.r.t. sets ⇔ all fibers of f are inhabited. Characterization of epimorphisms

- Fact A map $f : X \to Y$ is epi w.r.t. sets $\iff f$ is surjective.
- Surjectivity means: for every y : Y, the fiber of f is inhabited. That is, we have an element of the propositional truncation of

$$\operatorname{fib}_f(y) \coloneqq \sum_{x:X} f(x) = y.$$

▶ <u>Fact</u>' A map $f : X \to Y$ is epi w.r.t. sets ⇔ all fibers of f are inhabited.

Theorem

A map $f: X \to Y$ is epi (w.r.t. all types) \iff all fibers are acyclic.

That is, the suspension of $fib_f(y)$ is equivalent to 1 for all y : Y.

The bigger picture

Epis (w.r.t. all types) \longrightarrow Epis w.r.t. *k*-types $\|$ Maps with acyclic fibers \longrightarrow Maps with *k*-acyclic-fibers

▶ <u>Def.</u> A type A is k-acyclic if its suspension is k-connected, i.e. $\|\Sigma A\|_k \simeq 1$.

Note: sets are exactly the 0-types and a type is 0-acyclic if and only if it is inhabited, so we recover the results for sets and surjections.

The bigger picture

Epis (w.r.t. all types) \longrightarrow Epis w.r.t. *k*-types $\|$ Maps with acyclic fibers \longrightarrow Maps with *k*-acyclic-fibers

▶ <u>Def.</u> A type A is k-acyclic if its suspension is k-connected, i.e. $\|\Sigma A\|_k \simeq 1$.

- Note: sets are exactly the 0-types and a type is 0-acyclic if and only if it is inhabited, so we recover the results for sets and surjections.
- We have nice characterizations of k-acyclic types for small k:
 1-acyclic \leftarrow 0-connected
 2-acyclic \leftarrow 0-connected and perfect fundamental group
 (A group is perfect if it's equal to its commutator subgroup.)

Proving the characterization of epimorphisms

• Lemma A map $f : A \rightarrow B$ is epic if and only if its codiagonal ∇_f is an equivalence.

Proving the characterization of epimorphisms

• Lemma A map $f : A \rightarrow B$ is epic if and only if its codiagonal ∇_f is an equivalence.

Lemma The codiagonal is the fiberwise suspension:

 $\operatorname{fib}_{\nabla_f}(b) \simeq \Sigma \operatorname{fib}_f(b).$

<u>Proof</u>. By descent the diagram above pulls back to a pushout of fibers.

Proving the characterization of epimorphisms

• Lemma A map $f : A \rightarrow B$ is epic if and only if its codiagonal ∇_f is an equivalence.

• <u>Lemma</u> The codiagonal is the fiberwise suspension:

 $\operatorname{fib}_{\nabla_f}(b) \simeq \Sigma \operatorname{fib}_f(b).$

<u>Proof</u>. By descent the diagram above pulls back to a pushout of fibers.

• <u>Thm</u>. A map is epic if and only if all its fibers are acyclic.

Towards examples of acyclic types

- For building examples of acyclic types (and hence epis) it helps to be familiar with classifying types/deloopings of groups.
- Buchholtz, Rijke and van Doorn showed that there is a equivalence between the categories of
 - groups with group homomorphisms,
 - O-connected, pointed 1-types with pointed maps.

Towards examples of acyclic types

- For building examples of acyclic types (and hence epis) it helps to be familiar with classifying types/deloopings of groups.
- Buchholtz, Rijke and van Doorn showed that there is a equivalence between the categories of
 - groups with group homomorphisms,
 - O-connected, pointed 1-types with pointed maps.
- Given a group G we construct a 0-connected 1-type BG with a point pt : BG such that we have an isomorphism of groups

$$\Omega \mathsf{B} G \coloneqq (\mathsf{pt} = \mathsf{pt}) \cong G.$$

The group structure on ΩBG is concatenation of paths.

▶ We call BG the classifying type or delooping of G.

No acyclic sets

▶ <u>Thm</u>. The only 1-acyclic *set* is the unit type.

No acyclic sets

<u>Thm</u>. The only 1-acyclic set is the unit type.

▶ <u>Proof</u>. Let *G* be the free group on an acyclic set *A* with inclusion of generators $\eta : A \hookrightarrow G$. If *A* is acyclic, then $A \to \mathbf{1}$ is an epi, so the constant map

$$\mathsf{B}G\to (A\to\mathsf{B}G)$$

is an embedding. Hence, the constant map $G \to (A \to G)$ is an equivalence. Thus, η is constant. But it is also an embedding, so A must be a subsingleton. Finally, A is also inhabited, because it is 0-acyclic.

Hatcher's 2-dimensional complex

Hatcher's 2-dimensional complex is an example of a nontrivial acyclic space.

We import Hatcher's 2-dimensional complex as a HIT X with constructors:

pt: X, $a, b: \Omega X$, $r: a^5 = b^3$, $s: b^3 = (ab)^2$

Prop. The type X has a 0-connected map to BA₅, the classifying type of the alternating group A₅. So X is nontrivial.

Towards acyclicity of Hatcher's complex

Def. A Hatcher structure on a pointed type A is given by identifications

$$a, b: \Omega A, \quad r: a^5 = b^3, \quad s: b^3 = (ab)^2.$$

A Hatcher algebra is a pointed type equipped with a Hatcher structure. The HIT X is precisely the *initial* Hatcher algebra.

Towards acyclicity of Hatcher's complex

Def. A Hatcher structure on a pointed type A is given by identifications

 $a, b: \Omega A, \quad r: a^5 = b^3, \quad s: b^3 = (ab)^2.$

A Hatcher algebra is a pointed type equipped with a Hatcher structure. The HIT X is precisely the *initial* Hatcher algebra.

Lemma Every loop space, pointed at refl, has a unique Hatcher structure.

• <u>Proof</u>. The type of Hatcher structures a loop space ΩA is

$$\sum_{a,b:\Omega^2A} (a^5 = b^3) \times (b^3 = (ab)^2).$$

By Eckmann–Hilton, we have ab = ba, so the last component is equivalent to $b = a^2$, and can be contracted away to obtain: $\sum_{a:\Omega^2 A} (a^5 = a^6)$. But, cancelling a^5 , this is equivalent to the contractible type $\sum_{a:\Omega^2 A} (a = \text{refl})$. Acyclicity of Hatcher's complex

▶ Prop. The type X is acyclic.

Proof. For all pointed types Y, we have:

$$\begin{split} (\Sigma X \to_{\mathsf{pt}} Y) &\simeq (X \to_{\mathsf{pt}} \Omega Y) \ &\simeq ext{Hatcher-structure}(\Omega Y) \ &\simeq \mathbf{1}. \end{split}$$

Thus, ΣX has the universal property of the unit type and hence must be contractible.

Higman's type

Higman's group is given by the presentation

 $\mathsf{H} \coloneqq \langle a, b, c, d \mid a = [d, a], b = [a, b], c = [b, c], d = [c, d] \rangle,$

where [x, y] is the commutator $[x, y] = xyx^{-1}y^{-1}$.

Its classifying type BH is easily described as a HIT with a point constructor pt : BH, four path constructors
 a, b, c, d : Ω BH and four 2-cell constructors for the relations.

Higman's type

Higman's group is given by the presentation

 $\mathsf{H} \coloneqq \langle a, b, c, d \mid a = [d, a], b = [a, b], c = [b, c], d = [c, d] \rangle,$

where [x, y] is the commutator $[x, y] = xyx^{-1}y^{-1}$.

- Its classifying type BH is easily described as a HIT with a point constructor pt : BH, four path constructors
 a, b, c, d : Ω BH and four 2-cell constructors for the relations.
- Similar to Hatcher's example, Eckmann-Hilton implies that BH is acyclic as the commutators become trivial in higher loop types.
- The group can be shown to be nontrivial, but the classical proof requires combinatorial group theory.

For \leq 3 generators and relations the presentation yields the trivial group!

We completely avoid classical combinatorial group theory in proving that Higman's type is nontrivial.

- We completely avoid classical combinatorial group theory in proving that Higman's type is nontrivial.
- Instead, we use tools from higher topos/type theory.
 - Descent: Interplay between pullbacks and pushouts.

- We completely avoid classical combinatorial group theory in proving that Higman's type is nontrivial.
- Instead, we use tools from higher topos/type theory.
 - Descent: Interplay between pullbacks and pushouts.

In a commutative cube whose bottom square is a pushout and whose back sides are pullbacks,

the front sides are pullbacks \iff the top square is a pushout.

- We completely avoid classical combinatorial group theory in proving that Higman's type is nontrivial.
- Instead, we use tools from higher topos/type theory.
 - Descent: Interplay between pullbacks and pushouts.
 - ▶ <u>Thm</u>. (Wärn) Given 0-truncated maps of 1-types $A \leftarrow R \rightarrow B$, the pushout $A +_R B$ is again a 1-type and the inclusion maps are 0-truncated.

Such 0-truncated maps give inclusions on loop spaces/groups.

- We completely avoid classical combinatorial group theory in proving that Higman's type is nontrivial.
- Instead, we use tools from higher topos/type theory.
 - Descent: Interplay between pullbacks and pushouts.
 - ▶ <u>Thm</u>. (Wärn) Given 0-truncated maps of 1-types $A \leftarrow R \rightarrow B$, the pushout $A +_R B$ is again a 1-type and the inclusion maps are 0-truncated.

Such 0-truncated maps give inclusions on loop spaces/groups.

▶ We can (re)construct BH as a series of such pushout squares.

It also follows that BH is a 1-type: no need to truncate!

We re-express BH as an iterated pushout:

$$\begin{array}{cccc} \mathsf{B}\langle b\rangle & \longrightarrow & \mathsf{B}\langle b, c\rangle & & \mathsf{B}\langle a, c\rangle & \longrightarrow & \mathsf{B}\langle a, b, c\rangle \\ & & & \downarrow & & \downarrow & & \downarrow \\ \mathsf{B}\langle a, b\rangle & \longrightarrow & \mathsf{B}\langle a, b, c\rangle & & \mathsf{B}\langle c, d, a\rangle & \longrightarrow & \mathsf{B}\mathsf{H} \end{array}$$

Here, each type is the HIT that uses only the constructors of BH that involve the mentioned generators.

In particular, $\mathsf{B}\langle b \rangle \simeq \mathbb{S}^1$ and $\mathsf{B}\langle a, c \rangle \simeq \mathbb{S}^1 \vee \mathbb{S}^1$.

We re-express BH as an iterated pushout:

Here, each type is the HIT that uses only the constructors of BH that involve the mentioned generators.

In particular, $\mathsf{B}\langle b \rangle \simeq \mathbb{S}^1$ and $\mathsf{B}\langle a, c \rangle \simeq \mathbb{S}^1 \vee \mathbb{S}^1$.

By Wärn's theorem, if the span maps are 0-truncated, then each generator a, b, c, d has infinite order in BH which must also be a 1-type.

We consider the left pushout square

 $\begin{array}{c} \mathsf{B}\langle b\rangle \longrightarrow \mathsf{B}\langle b,c\rangle \\ \downarrow \qquad \ulcorner \downarrow \\ \mathsf{B}\langle a,b\rangle \rightarrow \mathsf{B}\langle a,b,c\rangle \end{array}$

We consider the left pushout square

 $\begin{array}{c} \mathsf{B}\langle b\rangle \longrightarrow \mathsf{B}\langle b,c\rangle \\ \downarrow \qquad \ulcorner \downarrow \\ \mathsf{B}\langle a,b\rangle \rightarrow \mathsf{B}\langle a,b,c\rangle \end{array}$

• The type $B\langle a, b \rangle$ classifies the Baumslag–Solitar group

 $BS(1,2) = \langle a, b \mid aba^{-1} = b^2 \rangle,$

and is a so-called HNN-extension.

On classifying types this translates to a coequalizer (bottom left), or equivalently, a pushout square (bottom right):

$$\mathbb{S}^{1} \xrightarrow{b} \mathsf{B}\langle b \rangle \longrightarrow \mathsf{B}\langle a, b \rangle \qquad \begin{array}{c} \mathbb{S}^{1} + \mathbb{S}^{1} \xrightarrow{\nabla} \mathbb{S}^{1} \\ [1,2] \downarrow \qquad \downarrow \\ \mathsf{B}\langle b \rangle \longrightarrow \mathsf{B}\langle a, b \rangle \end{array}$$

• We consider the left pushout square

 $\begin{array}{c} \mathsf{B}\langle b\rangle \longrightarrow \mathsf{B}\langle b,c\rangle \\ \downarrow \qquad \ulcorner \downarrow \\ \mathsf{B}\langle a,b\rangle \rightarrow \mathsf{B}\langle a,b,c\rangle \end{array}$

• The type $B\langle a, b \rangle$ classifies the Baumslag–Solitar group

 $BS(1,2) = \langle a, b \mid aba^{-1} = b^2 \rangle,$

and is a so-called HNN-extension.

On classifying types this translates to a coequalizer (bottom left), or equivalently, a pushout square (bottom right):

$$\mathbb{S}^{1} \xrightarrow{b} \mathsf{B}\langle b \rangle \longrightarrow \mathsf{B}\langle a, b \rangle \qquad \begin{array}{c} \mathbb{S}^{1} + \mathbb{S}^{1} \xrightarrow{\nabla} \mathbb{S}^{1} \\ [1,2] \downarrow \qquad \downarrow \qquad \qquad \downarrow \\ \mathsf{B}\langle b \rangle \longrightarrow \mathsf{B}\langle a, b \rangle \end{array}$$

We apply Wärn's theorem to get that the bottom map is 0-truncated. The other span map can be checked directly.

Consider the other pushout square

- ► Consider the other pushout square $\begin{array}{c} \mathsf{B}\langle a,c\rangle \longrightarrow \mathsf{B}\langle a,b,c\rangle \\ \downarrow & \downarrow \\ \mathsf{B}\langle c,d,a\rangle \longrightarrow \mathsf{B}\mathsf{H} \end{array}$
- We apply descent in the commutative cube

to get that the front sides are pullbacks. Since the side maps are 0-truncated, the front map is as well.

In summary,

Theorem

Higman's type BH is an acyclic 1-type in which all four generators have infinite order.

Summary

In the presence of higher types, the notion of epimorphism

becomes quite strong,

- coincides with the notion of an acyclic map, and
- ▶ is interesting from the p.o.v. of synthetic homotopy theory.

Additional and future work

- Details and further results (e.g. closure properties) in:
 - Epimorphisms and Acyclic Types in Univalent Mathematics Ulrik Buchholtz, TdJ, Egbert Rijke. arXiv:2401.14106. January 2024

Additional and future work

Details and further results (e.g. closure properties) in:

Epimorphisms and Acyclic Types in Univalent Mathematics Ulrik Buchholtz, TdJ, Egbert Rijke. arXiv:2401.14106. January 2024

 Some properties seem to need an additional axiom:
 Plus Principle: Every acyclic and simply connected type is contractible.

It follows from Whitehead's Principle and was highlighted by Hoyois in ∞ -topos theory.

Additional and future work

- Details and further results (e.g. closure properties) in:
 - Epimorphisms and Acyclic Types in Univalent Mathematics Ulrik Buchholtz, TdJ, Egbert Rijke. arXiv:2401.14106. January 2024
- Some properties seem to need an additional axiom:
 Plus Principle: Every acyclic and simply connected type is contractible.

It follows from Whitehead's Principle and was highlighted by Hoyois in $\infty\text{-}{\rm topos}$ theory.

- Do the acyclic maps form an accessible modality?
- Use the theory of binate groups to prove acyclicity of some infinitely presented groups?

References

- Michael Barratt and Stewart Priddy. 'On the homology of non-connected monoids and their associated groups'. In: Commentarii Mathematici Helvetici 47 (1972), pp. 1–14. DOI: 10.1007/BF02566785.
- Gilbert Baumslag and Donald Solitar. 'Some two-generator one-relator non-Hopfian groups'. In: Bulletin of the American Mathematical Society 68 (1962), pp. 199–201. DOI: 10.1090/S0002-9904-1962-10745-9.
- [3] Marc Bezem, Ulrik Buchholtz, Pierre Cagne, Bjørn Ian Dundas and Daniel R. Grayson. Symmetry. https://github.com/UniMath/SymmetryBook. Commit: c267311. 14th Dec. 2023.
- [4] Ulrik Buchholtz, Floris van Doorn and Egbert Rijke. 'Higher Groups in Homotopy Type Theory'. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '18. Association for Computing Machinery, 2018, pp. 205–214. DOI: 10.1145/3209108.3209150.
- [5] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002. URL: https://pi.math.cornell.edu/~hatcher/AT/ATpage.html.
- Jean-Claude Hausmann and Dale Husemoller. 'Acyclic maps'. In: L'enseignement Mathématique 25.1–2 (1979), pp. 53–75. DOI: 10.5169/seals-50372.
- [7] Graham Higman. 'A finitely generated infinite simple group'. In: The Journal of the London Mathematical Society 26 (1951), pp. 61–64. DOI: 10.1112/jlms/s1-26.1.61.
- [8] Graham Higman, B. H. Neumann and Hanna Neuman. 'Embedding Theorems for Groups'. In: Journal of the London Mathematical Society s1-24.4 (1949), pp. 247–254. DOI: 10.1112/jlms/s1-24.4.247.
- [9] Marc Hoyois. 'On Quillen's plus construction'. 2019. URL: https://hoyois.app.uni-regensburg.de/papers/acyclic.pdf.
- [10] D. M. Kan and W. P. Thurston. 'Every connected space has the homology of a K(π, 1)'. In: Topology 15.3 (1976), pp. 253–258. DOI: 10.1016/0040-9383(76)90040-9.
- [11] Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Classics in Mathematics. Reprint of the 1977 Edition (Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 89). Springer, 2001. DOI: 10.1007/978-3-642-61896-3.
- [12] George Raptis. 'Some characterizations of acyclic maps'. In: Journal of Homotopy and Related Structures 14.3 (2019), pp. 773–785. DOI: 10.1007/s40062-019-00231-6.
- [13] David Wärn. 'Path spaces of pushouts'. 2023. URL: https://dwarn.se/po-paths.pdf.