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Motivation and background

» Classically, ordinals have powerful applications as tools for e.g. establishing
consistency of logical theories, proving termination of processes, and justifying
induction and recursion.

» Can we develop the theory of ordinals constructively?
In particular, can we give a satisfactory account of ordinal arithmetic and
specifically of ordinal exponentiation?

» We work in homotopy type theory (HoTT) following foundational work in the
HoTT Book and in the TypeTopology Agda development by Martin Escardé.
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» Classically, ordinal exponentiation is usually defined by inspecting whether the
exponent is zero, a successor, or a limit ordinal:

=1 =0 (if B #0)
Pt =af xa o =supa®  (if Ais a limit, a # 0)
B<A

» Such a case distinction is only possible classically: it can be done for all ordinals if
and only if excluded middle holds.

» Thm. (Imprecise) There is a well behaved exponentiation function on all ordinals
if and only if excluded middle holds.
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The highlights

» Working constructively in HoTT, we construct two well behaved ordinal
exponentiation functions a(~) with a minor condition on the base ordinal

» The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.

It is well defined whenever o« > 1, i.e. whenever « has a least element.

» The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpinski based on functions with finite support.
It is well defined whenever o has a trichotomous least element: the least element ag

is further required to satisfy the decidability condition: ¥(x : a).(ap < x) + (ap = x).

» We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

» We use this equivalence together with univalence (representation
independence) to prove algebraic laws and decidability properties.
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» All of its results are formalized in the proof assistant Agda. Clicking a # next to a
definition, lemma, theorem, etc. in the paper takes you to its formalization.
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Ordinals in HoTT

» An ordinal is a type a with a binary proposition-valued relation < on « that is
transitive, extensional and wellfounded.

Extensionality says that two elements are equal if and only if they have the same
predecessors: x = yif and only if V(u: a).u < x <> u < y.

Wellfoundedness is defined via an inductive accessibility predicate but is
equivalent to transfinite induction: for any type family P over o and x : o, we
have (V(y : a).y <x — Py) — Px.

» Examples of ordinals include 0,1, N and the type List—(«) of decreasing lists over
any ordinal a.
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The ordinal of (small) ordinals
» A fundamental fact is that for any ordinal « and a : «, the initial segment

ala=X(x:a)x<a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

> Setting
a<fB=X(b:B)a=p5lb

makes the type Ord of (small) ordinals into an ordinal itself.
For proving extensionality, we use univalence.

In particular, we can define operations on Ord by transfinite induction.

» Moreover, Ord is a poset with

a<pB=Y(f:a—p)Y(a:A.ala=plfa
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Preliminary constructions of ordinals

» Given ordinals « and f3, their sum is given by the type o + 3 and putting
everything in the left component below anything in the right component.

(a+p)linla=ala and (a+pB)linrb=a+(81b)

» Given ordinals « and f3, their product is given by the type a x 5 ordered
lexicographically with the right component taking precedence.

(ax B) L (ab)=ax(8]b)+(ala)

» Given a family of ordinals F, : | — Ord, we can construct its supremum sup F,.

In particular we have maps [i, —| : F; < sup F, such that for any y : sup F,
there exists /i : / and x : F; with

y=1[i,x] and supF,ly=F;]x.
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Abstract exponentiation

» Inspired by the classical definition (and the no-go theorem), we now wish to
construct, for v > 1, an operation o) satisfying the specification:

=1
Pt = of x o
oS Fi — sup(aF") (if / is inhabited)

izl
» Lemma For every ordinal 3 we have 3 = sup, 5((5 | b) +1).

» lIdea: /f we had o, then
ol = asPes(BID)+1 1y sup oBh)+1 \ sup (aﬁlb « a).
b:3 b:3
» Def. Define abstract exponentiation o’ by transfinite induction in Ord on 3 as

5 ._ inl x—1
o’ = sup 31b

x: 1+ inrb— « X «

14



Properties of abstract exponentiation
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Properties of abstract exponentiation

» Def. (repeated) Abstract exponentiation o is given by transfinite induction on 3

3 inl x+—1
o = su
X:1+p5 inr b — OzBJ’b X «

» Thm. This transfinite construction satisfies the specification as well as

P =0l xa? and 77 = (045)7.

» Using the characterization of initial segments of suprema and products, we have
fora:a,b:fande: aP+b that

o | finrb, (e, a)] = ™ x (a | a) + (&P | e).
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Concrete exponentiation

> Sierpiniski classically constructs o using the set of functions f : 3 — « such that
f has finite support: i.e. f b is not the least element ap only finitely many times.

» Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.

The least element ag : « should not be an output, so we consider
aso=2(a:a).a> a
and define concrete exponentiation as
exp(a, B) = X(¢: List(aso x 3)). ¢ is decreasing in the S-component.

> We require a trichotomous least element a2, i.e. ap satisfies (agp < x) + (ap = x)
for all x : a, to ensure that a~¢ and hence exp («, 3) is an ordinal.
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Properties of abstract and concrete exponentiation

» Thm. Concrete exponentiation satisfies the specification.

Some other algebraic properties proved tedious to establish rigorously.

» Thm. Concrete exponentiation obviously preserves decidability properties,
e.g. if a and 3 have decidable equality, then so does exp («, [3).

This is not at all obvious for abstract exponentiation.

» Thankfully, abstract and concrete exponentiation agree!”

So we can transfer properties from one construction to the other and make use
of their particular advantages.

* When the base ordinal has a trichotomous least element
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Proving that abstract and concrete exponentiation agree

>

>

>

The key idea is to characterize initial segments.
Recall that o | [inr b, (e, a)] = a™P x (a | a) + (P | e).

For concrete exponentiation we can prove
exp (0, 8) 4 ((2,b) 2 15 0) = exp(a, 81 b) x (o a)+exp(a, 81 b) L1
where ¢p, : exp (o, B | b) < exp (v, ) is the obvious inclusion.

Notice the similarity to the above equation!

A proof by transfinite induction in Ord on 3 then shows:

Thm. For av with a trichotomous least element and 3 we have exp (o, ) = aP.

The equality exp (o, 3) = o” induces a function exp (o, 3) — o which we show
to coincide with a natural denotation map that captures the intuition that a list
in exp (v, ) is a concrete representation of an abstract element of o,

3/14
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Wrapping up
» We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

» Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

» In the paper we further mark the limits of a constructive treatment by
presenting no-go theorems that show the law of excluded middle to be equivalent
to certain statements about ordinal exponentiation.

» Natural question: can we fuse the two constructions and use quotiented lists
to define ordinal exponentiation for base ordinals that do not necessarily have a
trichotomous least element?

Thank you!
arXiv:2501.14542
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