Ordinal Exponentiation in Homotopy Type Theory

Tom de Jong® Nicolai Kraus® Fredrik Nordvall Forsberg? Chuangjie Xu

IUniversity of Nottingham, UK
2University of Strathclyde, UK

Dutch Categories And Types Seminar (DutchCATS)
7 February 2025

Motivation and background

» Classically, ordinals have powerful applications as tools for e.g. establishing
consistency of logical theories, proving termination of processes, and justifying
induction and recursion.

Motivation and background

» Classically, ordinals have powerful applications as tools for e.g. establishing
consistency of logical theories, proving termination of processes, and justifying
induction and recursion.

» Can we develop the theory of ordinals constructively?
In particular, can we give a satisfactory account of ordinal arithmetic and
specifically of ordinal exponentiation?

Motivation and background

» Classically, ordinals have powerful applications as tools for e.g. establishing
consistency of logical theories, proving termination of processes, and justifying
induction and recursion.

» Can we develop the theory of ordinals constructively?
In particular, can we give a satisfactory account of ordinal arithmetic and
specifically of ordinal exponentiation?

» We work in homotopy type theory (HoTT) following foundational work in the
HoTT Book and in the TypeTopology Agda development by Martin Escardé.

The problem(s)

» Classically, ordinal exponentiation is usually defined by inspecting whether the
exponent is zero, a successor, or a limit ordinal:

=1 =0 (if B #0)
=d’ xa o =supa® (if Ais a limit, a # 0)
B<A

The problem(s)

» Classically, ordinal exponentiation is usually defined by inspecting whether the
exponent is zero, a successor, or a limit ordinal:

=1 =0 (if B #0)
Pt =af xa o =supa® (if Ais a limit, a # 0)
B<A

» Such a case distinction is only possible classically: it can be done for all ordinals if
and only if excluded middle holds.

The problem(s)

» Classically, ordinal exponentiation is usually defined by inspecting whether the
exponent is zero, a successor, or a limit ordinal:

=1 =0 (if B #0)
Pt =af xa o =supa® (if Ais a limit, a # 0)
B<A

» Such a case distinction is only possible classically: it can be done for all ordinals if
and only if excluded middle holds.

» Thm. (Imprecise) There is a well behaved exponentiation function on all ordinals
if and only if excluded middle holds.

The highlights

» Working constructively in HoTT, we construct two well behaved ordinal
exponentiation functions a(~) with a minor condition on the base ordinal

4/14

The highlights
» Working constructively in HoTT, we construct two well behaved ordinal

exponentiation functions a(~) with a minor condition on the base ordinal

» The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.

It is well defined whenever o« > 1, i.e. whenever « has a least element.

The highlights
» Working constructively in HoTT, we construct two well behaved ordinal

exponentiation functions a(~) with a minor condition on the base ordinal

» The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.

It is well defined whenever o« > 1, i.e. whenever « has a least element.

» The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpinski based on functions with finite support.

The highlights

» Working constructively in HoTT, we construct two well behaved ordinal
exponentiation functions a(~) with a minor condition on the base ordinal

» The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.

It is well defined whenever o« > 1, i.e. whenever « has a least element.
» The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpinski based on functions with finite support.

It is well defined whenever o has a trichotomous least element: the least element ag
is further required to satisfy the decidability condition: ¥(x : a).(ap < x) + (ap = x).

The highlights

» Working constructively in HoTT, we construct two well behaved ordinal
exponentiation functions a(~) with a minor condition on the base ordinal

» The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.

It is well defined whenever o« > 1, i.e. whenever « has a least element.

» The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpinski based on functions with finite support.
It is well defined whenever o has a trichotomous least element: the least element ag

is further required to satisfy the decidability condition: ¥(x : a).(ap < x) + (ap = x).

» We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

The highlights

» Working constructively in HoTT, we construct two well behaved ordinal
exponentiation functions a(~) with a minor condition on the base ordinal

» The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.

It is well defined whenever o« > 1, i.e. whenever « has a least element.

» The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpinski based on functions with finite support.
It is well defined whenever o has a trichotomous least element: the least element ag

is further required to satisfy the decidability condition: ¥(x : a).(ap < x) + (ap = x).

» We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

» We use this equivalence together with univalence (representation
independence) to prove algebraic laws and decidability properties.

Commercial break

» Qur paper is available on arXiv:2501.14542.

arXiv:2501.14542v1 [cs.LO] 24 Jan 2025

ORDINAL EXPONENTIATION IN HOMOTOPY TYPE THEORY

TOM DE JONG, NICOLA! KRAUS, FRED
CHUANG)

(ORDVALL FORSBERG,

ORIK
: XU

Wik o b

oty e st sy i i
e st g
ot ondinal

the question). and
s o ety nw.-m--d the exponenti

Al our resula are

.
of asistant Agi.

1. INTRODUCTION
T clasical mathematics and set theory, ordinals have rich and interesting struc

ture. How much of this structure can be developed in a constructive setting, such

as homotopy type theory? This is not merely a question of mathematical curiosity,

s clasical ol bave vl spplcatons s o o St g combucney

of logical theories [[21¢07], provin of processes [Flo67], and jus
uction s recursion [Ac7; DS } which al ou Ix'\nl\mbh‘Inln«w«\‘mlnhh-
tive mathematic base > ype

3 v, In e pape, o ol u
types of well .,mml

m....um.u\m 70: CLN23), te
Type Theory Book [Uni13] and con

be. sa crdlenl s &ty sqlpped vnlh s e
Ordlnse it

: Cluicaly, asthmetic

mite recursion:

H

metic ralzes the one of the atoral

seners

us are defined by case distinction and

a0
a+(E+1)
atA=supsey(ath) (i A s a limit)

axo
ax@+1)=(axf+a
axA=supy(ax8) A is limit)

words and phrases. consteuctive mathemmatics, homotapy type theor, ordi
A femalcion

5/14

https://arxiv.org/abs/2501.14542

Commercial break
» Qur paper is available on arXiv:2501.14542.

ORDINAL EXPONENTIATION IN HOMOTOPY TYPE THEORY

TOM DE JONG, NICOLA KIRAUS, FREDRIK NORDYALL FORSBERG, Proposition 10 (). For ordinals a, § and v, we have
a® =a? x a7,

Proof. We do transfinite induction on 7. Our first observation is that

Avsriacr. While ordinals have traditionally been studied mondly in clamical
e et I theory has seen sign o

7 x 0" = a® Vsup,., (0 x ¥ x a),

5

which follows from the fact that multiplication is continuous on the right (Lemma 2),
noting that V is implemented as a supremum.

Applying the induction hypothesis, we can rewrite a” x a7 to o
al#+)4re The remaining goal thus is

F24e which is

a7 = a8V sup,,, (aB+De x),

which one gets by unfolding the definition on the left and applying antisymmetry. 0

—— Proposition 11 (%). For ordinals a, 3 and ~, iterated exponentiation can be
o calculated as follows:
al mathematics e
tare. How much of this st (a#)" = 2?7
Bomoton e ey
ordinals hive powerful applications as tools for e
tores 107, proin trmition of proceses [
o rcurion [whi old be val

i set theory, ordinals have rich and interesting struc

42v1 [cs.LO] 24 Jan 202

Proposition-10 : (a : Ordinal u) (B y : Ordinal V)

) in comtractive math acts based 0n cn
= proaches to ordinals, such ~ @ (Bt y) = (@ B) xo (@ oY)
. 21, o ollound tres v Proposition-10 = "o-by-+o
= this paper, we folow the Homotopy
2 | s order types of wellordered sets Proposition-11 : (a : Ordinal %) (B y : Ordinal V)
& fe., an ordinal s & type cquipped with @ (Boxey) = (@R B) Moy
= numbers. Proposition-11 = "o-by-xs
> transfinite recursion:
P oo \end{code}
at(@E+)=(a+8)+1 Section V. Decreasing Lists: A Constructive Formulation
a+A=supsr(at) (i Xis imit) of Sierpiski's Definition
ax0=0 \begin{code}
ax@+=(axp+a Definition-12 : (a : Ordinal %) (B : Ordinal V) = u UV
axA=sups(axd) G A limit) Definition-12 a B = Decrlist: a B

ey words and phrase. constructive mathematics, homotopy type theory,ordinal
Al Formalization

» All of its results are formalized in the proof assistant Agda. Clicking a # next to a
definition, lemma, theorem, etc. in the paper takes you to its formalization.

https://arxiv.org/abs/2501.14542

Ordinals in HoTT

» An ordinal is a type a with a binary proposition-valued relation < on « that is
transitive, extensional and wellfounded.

Ordinals in HoTT

» An ordinal is a type a with a binary proposition-valued relation < on « that is
transitive, extensional and wellfounded.

Extensionality says that two elements are equal if and only if they have the same
predecessors: x = yif and only if V(u: a).u < x <> u < y.

Ordinals in HoTT

» An ordinal is a type a with a binary proposition-valued relation < on « that is
transitive, extensional and wellfounded.

Extensionality says that two elements are equal if and only if they have the same
predecessors: x = yif and only if V(u: a).u < x <> u < y.

Wellfoundedness is defined via an inductive accessibility predicate but is
equivalent to transfinite induction: for any type family P over o and x : o, we
have (V(y : a).y <x — Py) — Px.

» Examples of ordinals include 0,1, N and the type List—(«) of decreasing lists over
any ordinal a.

The ordinal of (small) ordinals
» A fundamental fact is that for any ordinal « and a : «, the initial segment

ala=X(x:a)x<a

is again an ordinal.

14

The ordinal of (small) ordinals
» A fundamental fact is that for any ordinal « and a : «, the initial segment

ala=X(x:a)x<a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

The ordinal of (small) ordinals
» A fundamental fact is that for any ordinal « and a : «, the initial segment

ala=X(x:a)x<a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

> Setting
a<fB=X(b:B)a=p5lb
makes the type Ord of (small) ordinals into an ordinal itself.
For proving extensionality, we use univalence.

The ordinal of (small) ordinals
» A fundamental fact is that for any ordinal « and a : «, the initial segment

ala=X(x:a)x<a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

> Setting
a<fB=X(b:B)a=p5lb

makes the type Ord of (small) ordinals into an ordinal itself.
For proving extensionality, we use univalence.

In particular, we can define operations on Ord by transfinite induction.

The ordinal of (small) ordinals
» A fundamental fact is that for any ordinal « and a : «, the initial segment

ala=X(x:a)x<a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

> Setting
a<fB=X(b:B)a=p5lb

makes the type Ord of (small) ordinals into an ordinal itself.
For proving extensionality, we use univalence.

In particular, we can define operations on Ord by transfinite induction.

» Moreover, Ord is a poset with

a<pB=Y(f:a—p)Y(a:A.ala=plfa

Preliminary constructions of ordinals

» Given ordinals « and f3, their sum is given by the type o + 3 and putting
everything in the left component below anything in the right component.

(a+p)linla=ala and (a+p)linrb=a+ (8] Db)

8/14

Preliminary constructions of ordinals

» Given ordinals « and f3, their sum is given by the type o + 3 and putting
everything in the left component below anything in the right component.

(a+p)linla=ala and (a+pB)linrb=a+(81b)

» Given ordinals « and f3, their product is given by the type a x 5 ordered
lexicographically with the right component taking precedence.

(ax B) L (ab)=ax(8]b)+(ala)

Preliminary constructions of ordinals

» Given ordinals « and f3, their sum is given by the type o + 3 and putting
everything in the left component below anything in the right component.

(a+p)linla=ala and (a+pB)linrb=a+(81b)

» Given ordinals « and f3, their product is given by the type a x 5 ordered
lexicographically with the right component taking precedence.

(ax B) L (ab)=ax(8]b)+(ala)

» Given a family of ordinals F, : | — Ord, we can construct its supremum sup F,.

Preliminary constructions of ordinals

» Given ordinals « and f3, their sum is given by the type o + 3 and putting
everything in the left component below anything in the right component.

(a+p)linla=ala and (a+pB)linrb=a+(81b)

» Given ordinals « and f3, their product is given by the type a x 5 ordered
lexicographically with the right component taking precedence.

(ax B) L (ab)=ax(8]b)+(ala)

» Given a family of ordinals F, : | — Ord, we can construct its supremum sup F,.

In particular we have maps [i, —| : F; < sup F, such that for any y : sup F,
there exists /i : / and x : F; with

y=1[i,x] and supF,ly=F;]x.

Abstract exponentiation
» Inspired by the classical definition (and the no-go theorem), we now wish to
construct, for v > 1, an operation o) satisfying the specification:
0
a’ =1

(1B+1 :(Jéﬁ X

ot Fi = sup(af) (if / is inhabited)
il

Abstract exponentiation

» Inspired by the classical definition (and the no-go theorem), we now wish to
construct, for v > 1, an operation o) satisfying the specification:

=1
oM =0of x o
ot Fi = sup(af) (if / is inhabited)

il

» Lemma For every ordinal 3 we have 3 = sup, 5((5 | b) +1).

9/14

Abstract exponentiation

» Inspired by the classical definition (and the no-go theorem), we now wish to
construct, for v > 1, an operation o) satisfying the specification:

=1
Pt = of x o
oS Fi — sup(aF") (if / is inhabited)

izl
» Lemma For every ordinal 3 we have 3 = sup, 5((5 | b) +1).

» Idea: /f we had o, then

ol = asPes(BID)+1 1y sup oBh)+1 \ sup (aﬁlb « a).

b:3 b:3

9/14

Abstract exponentiation

» Inspired by the classical definition (and the no-go theorem), we now wish to
construct, for v > 1, an operation o) satisfying the specification:

=1
Pt = of x o
oS Fi — sup(aF") (if / is inhabited)

izl
» Lemma For every ordinal 3 we have 3 = sup, 5((5 | b) +1).

» lIdea: /f we had o, then
ol = asPes(BID)+1 1y sup oBh)+1 \ sup (aﬁlb « a).
b:3 b:3
» Def. Define abstract exponentiation o’ by transfinite induction in Ord on 3 as

5 ._ inl x—1
o’ = sup 31b

x: 1+ inrb— « X «

14

Properties of abstract exponentiation

» Def. (repeated) Abstract exponentiation o is given by transfinite induction on 3

3 inl x+—1
o = su
X:1+p5 inr b — OzBJ’b X «

» Thm. This transfinite construction satisfies the specification as well as

P =0l xa? and 77 = (aﬁ)v.

10/14

Properties of abstract exponentiation

» Def. (repeated) Abstract exponentiation o is given by transfinite induction on 3

3 inl x+—1
o = su
X:1+p5 inr b — OzBJ’b X «

» Thm. This transfinite construction satisfies the specification as well as

P =0l xa? and 77 = (045)7.

» Using the characterization of initial segments of suprema and products, we have
fora:a,b:fande: aP+b that

o | finrb, (e, a)] = ™ x (a | a) + (&P | e).

10/14

Concrete exponentiation

> Sierpiniski classically constructs o using the set of functions f : 3 — « such that
f has finite support: i.e. f b is not the least element ap only finitely many times.

Concrete exponentiation

> Sierpiniski classically constructs o using the set of functions f : 3 — « such that
f has finite support: i.e. f b is not the least element ap only finitely many times.

» Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.

Concrete exponentiation

> Sierpiniski classically constructs o using the set of functions f : 3 — « such that
f has finite support: i.e. f b is not the least element ap only finitely many times.

» Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.

The least element ag : « should not be an output, so we consider

aso=2(a:a).a> a

Concrete exponentiation

> Sierpiniski classically constructs o using the set of functions f : 3 — « such that
f has finite support: i.e. f b is not the least element ap only finitely many times.

» Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.

The least element ag : « should not be an output, so we consider
aso=2(a:a).a> a
and define concrete exponentiation as

exp(a, B) = X(¢: List(aso x 3)). ¢ is decreasing in the S-component.

Concrete exponentiation

> Sierpiniski classically constructs o using the set of functions f : 3 — « such that
f has finite support: i.e. f b is not the least element ap only finitely many times.

» Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.

The least element ag : « should not be an output, so we consider
aso=2(a:a).a> a
and define concrete exponentiation as
exp(a, B) = X(¢: List(aso x 3)). ¢ is decreasing in the S-component.

> We require a trichotomous least element a2, i.e. ap satisfies (agp < x) + (ap = x)
for all x : a, to ensure that a~¢ and hence exp («, 3) is an ordinal.

Properties of abstract and concrete exponentiation

» Thm. Concrete exponentiation satisfies the specification.

Some other algebraic properties proved tedious to establish rigorously.

Properties of abstract and concrete exponentiation

» Thm. Concrete exponentiation satisfies the specification.

Some other algebraic properties proved tedious to establish rigorously.

» Thm. Concrete exponentiation obviously preserves decidability properties,
e.g. if a and 3 have decidable equality, then so does exp («, [3).

This is not at all obvious for abstract exponentiation.

Properties of abstract and concrete exponentiation

» Thm. Concrete exponentiation satisfies the specification.

Some other algebraic properties proved tedious to establish rigorously.

» Thm. Concrete exponentiation obviously preserves decidability properties,
e.g. if a and 3 have decidable equality, then so does exp («, [3).

This is not at all obvious for abstract exponentiation.

» Thankfully, abstract and concrete exponentiation agree!”

So we can transfer properties from one construction to the other and make use
of their particular advantages.

* When the base ordinal has a trichotomous least element

Proving that abstract and concrete exponentiation agree

> The key idea is to characterize initial segments.

> Recall that o | [inr b, (e, a)] = o™ x (a] a) + (P | e).

13/14

Proving that abstract and concrete exponentiation agree

> The key idea is to characterize initial segments.
> Recall that o | [inr b, (e, a)] = o™ x (a] a) + (P | e).

P For concrete exponentiation we can prove

exp (0, 8) | ((3,) = 15) = exp(a, B 1 b) x (a | 3) +exp(a, B b) L€
where ¢p, : exp (o, B | b) < exp (v,) is the obvious inclusion.

Notice the similarity to the above equation!

13/14

Proving that abstract and concrete exponentiation agree

> The key idea is to characterize initial segments.
» Recall that o’ | [inrb, (e,a)] = o x (a] a) + (a?*P | e).

P For concrete exponentiation we can prove
exp (0, 8) 4 ((2,b) 2 15 0) = exp(a, 81 b) x (o a)+exp(a, 81 b) L1
where ¢p, : exp (o, B | b) < exp (v,) is the obvious inclusion.

Notice the similarity to the above equation!

» A proof by transfinite induction in Ord on 3 then shows:

Thm. For av with a trichotomous least element and 3 we have exp (o,) = aP.

13/14

Proving that abstract and concrete exponentiation agree

>

>

>

The key idea is to characterize initial segments.
Recall that o | [inr b, (e, a)] = a™P x (a | a) + (P | e).

For concrete exponentiation we can prove
exp (0, 8) 4 ((2,b) 2 15 0) = exp(a, 81 b) x (o a)+exp(a, 81 b) L1
where ¢p, : exp (o, B | b) < exp (v,) is the obvious inclusion.

Notice the similarity to the above equation!

A proof by transfinite induction in Ord on 3 then shows:

Thm. For av with a trichotomous least element and 3 we have exp (o,) = aP.

The equality exp (o, 3) = o” induces a function exp (o, 3) — o which we show
to coincide with a natural denotation map that captures the intuition that a list
in exp (v,) is a concrete representation of an abstract element of o,

3/14

Wrapping up

» We presented two constructively well behaved ordinal exponentiation functions for
base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

14/14

https://arxiv.org/abs/2501.14542

Wrapping up

» We presented two constructively well behaved ordinal exponentiation functions for
base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

» Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

14/14

https://arxiv.org/abs/2501.14542

Wrapping up

» We presented two constructively well behaved ordinal exponentiation functions for
base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

» Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

» In the paper we further mark the limits of a constructive treatment by
presenting no-go theorems that show the law of excluded middle to be equivalent
to certain statements about ordinal exponentiation.

https://arxiv.org/abs/2501.14542

Wrapping up
» We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

» Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

» In the paper we further mark the limits of a constructive treatment by
presenting no-go theorems that show the law of excluded middle to be equivalent
to certain statements about ordinal exponentiation.

» Natural question: can we fuse the two constructions and use quotiented lists
to define ordinal exponentiation for base ordinals that do not necessarily have a
trichotomous least element?

https://arxiv.org/abs/2501.14542

Wrapping up
» We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

» Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

» In the paper we further mark the limits of a constructive treatment by
presenting no-go theorems that show the law of excluded middle to be equivalent
to certain statements about ordinal exponentiation.

» Natural question: can we fuse the two constructions and use quotiented lists
to define ordinal exponentiation for base ordinals that do not necessarily have a
trichotomous least element?

Thank you!
arXiv:2501.14542

https://arxiv.org/abs/2501.14542

References

[1]

2

3

[4]
5]
[6]

(7

Peter Aczel. ‘An introduction to inductive definitions’. In: Handbook of Mathematical Logic. Ed. by Jon Barwise. Vol. 90. Studies in Logic
and the Foundations of Mathematics. North-Holland Publishing Company, 1977, pp. 739-782. poI: 10.1016/S0049-237X(08)71120-0.

Peter Dybjer and Anton Setzer. ‘A Finite Axiomatization of Inductive-Recursive Definitions'. In: Typed Lambda Calculi and Applications. 4th
International Conferene, TLCA'99, L'Aquila, Italy, April 1999, Proceedings. Ed. by Jean-Yves Girard. Vol. 1581. Lecture Notes in Computer
Science. Springer, 1999, pp. 129-146. pOI: 10.1007/3-540-48959-2_11.

Martin Hétzel Escardé et al. ‘Ordinals in univalent type theory in Agda notation’. Agda development, HTML rendering available at:
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.index.html. Since 2018. URL:
https://github.com/martinescardo/TypeTopology.

Robert W. Floyd. ‘Assigning meanings to programs’. In: Mathematical Aspects of Computer Science. Ed. by J. T. Schwartz. Vol. 19.
Proceedings of Symposia in Applied Mathematics. American Mathematical Society, 1967, pp. 19-32. DOI: 10.1090/psapm/019/0235771.

Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu. ‘Type-Theoretic Approaches to Ordinals’. In: Theoretical Computer Science 957
(2023). pOI: 10.1016/j.tcs.2023.113843. arXiv: 2208.03844 [cs.L0].

Michael Rathjen. ‘The art of ordinal analysis'. In: Proceedings of the International Congress of Mathematicians. Madrid 2006. Vol. 2.
European Mathematical Society Publishing House, 2007, pp. 45-69. po1: 10.4171/022-2/3.

Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study:
https://homotopytypetheory.org/book, 2013.

https://doi.org/10.1016/S0049-237X(08)71120-0
https://doi.org/10.1007/3-540-48959-2_11
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.index.html
https://github.com/martinescardo/TypeTopology
https://doi.org/10.1090/psapm/019/0235771
https://doi.org/10.1016/j.tcs.2023.113843
https://arxiv.org/abs/2208.03844
https://doi.org/10.4171/022-2/3
https://homotopytypetheory.org/book

	References

