
Ordinal Exponentiation in Homotopy Type Theory

Tom de Jong1 Nicolai Kraus1 Fredrik Nordvall Forsberg2 Chuangjie Xu

1University of Nottingham, UK
2University of Strathclyde, UK

Dutch Categories And Types Seminar (DutchCATS)

7 February 2025



Motivation and background

▶ Classically, ordinals have powerful applications as tools for e.g. establishing
consistency of logical theories, proving termination of processes, and justifying
induction and recursion.

▶ Can we develop the theory of ordinals constructively?
In particular, can we give a satisfactory account of ordinal arithmetic and
specifically of ordinal exponentiation?

▶ We work in homotopy type theory (HoTT) following foundational work in the
HoTT Book and in the TypeTopology Agda development by Martín Escardó.

2/14



Motivation and background

▶ Classically, ordinals have powerful applications as tools for e.g. establishing
consistency of logical theories, proving termination of processes, and justifying
induction and recursion.

▶ Can we develop the theory of ordinals constructively?
In particular, can we give a satisfactory account of ordinal arithmetic and
specifically of ordinal exponentiation?

▶ We work in homotopy type theory (HoTT) following foundational work in the
HoTT Book and in the TypeTopology Agda development by Martín Escardó.

2/14



Motivation and background

▶ Classically, ordinals have powerful applications as tools for e.g. establishing
consistency of logical theories, proving termination of processes, and justifying
induction and recursion.

▶ Can we develop the theory of ordinals constructively?
In particular, can we give a satisfactory account of ordinal arithmetic and
specifically of ordinal exponentiation?

▶ We work in homotopy type theory (HoTT) following foundational work in the
HoTT Book and in the TypeTopology Agda development by Martín Escardó.

2/14



The problem(s)

▶ Classically, ordinal exponentiation is usually defined by inspecting whether the
exponent is zero, a successor, or a limit ordinal:

α0 = 1 0β = 0 (if β ̸= 0)
αβ+1 = αβ × α αλ = sup

β<λ
αβ (if λ is a limit, α ̸= 0)

▶ Such a case distinction is only possible classically: it can be done for all ordinals if
and only if excluded middle holds.

▶ Thm. (Imprecise) There is a well behaved exponentiation function on all ordinals
if and only if excluded middle holds.

3/14



The problem(s)

▶ Classically, ordinal exponentiation is usually defined by inspecting whether the
exponent is zero, a successor, or a limit ordinal:

α0 = 1 0β = 0 (if β ̸= 0)
αβ+1 = αβ × α αλ = sup

β<λ
αβ (if λ is a limit, α ̸= 0)

▶ Such a case distinction is only possible classically: it can be done for all ordinals if
and only if excluded middle holds.

▶ Thm. (Imprecise) There is a well behaved exponentiation function on all ordinals
if and only if excluded middle holds.

3/14



The problem(s)

▶ Classically, ordinal exponentiation is usually defined by inspecting whether the
exponent is zero, a successor, or a limit ordinal:

α0 = 1 0β = 0 (if β ̸= 0)
αβ+1 = αβ × α αλ = sup

β<λ
αβ (if λ is a limit, α ̸= 0)

▶ Such a case distinction is only possible classically: it can be done for all ordinals if
and only if excluded middle holds.

▶ Thm. (Imprecise) There is a well behaved exponentiation function on all ordinals
if and only if excluded middle holds.

3/14



The highlights
▶ Working constructively in HoTT, we construct two well behaved ordinal

exponentiation functions α(−) with a minor condition on the base ordinal α:

▶ The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element a0
is further required to satisfy the decidability condition: ∀(x : α).(a0 < x) + (a0 = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

▶ We use this equivalence together with univalence (representation
independence) to prove algebraic laws and decidability properties.

4/14



The highlights
▶ Working constructively in HoTT, we construct two well behaved ordinal

exponentiation functions α(−) with a minor condition on the base ordinal α:
▶ The first construction is abstract, uses suprema of ordinals, and is motivated by

the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element a0
is further required to satisfy the decidability condition: ∀(x : α).(a0 < x) + (a0 = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

▶ We use this equivalence together with univalence (representation
independence) to prove algebraic laws and decidability properties.

4/14



The highlights
▶ Working constructively in HoTT, we construct two well behaved ordinal

exponentiation functions α(−) with a minor condition on the base ordinal α:
▶ The first construction is abstract, uses suprema of ordinals, and is motivated by

the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.

It is well defined whenever α has a trichotomous least element: the least element a0
is further required to satisfy the decidability condition: ∀(x : α).(a0 < x) + (a0 = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

▶ We use this equivalence together with univalence (representation
independence) to prove algebraic laws and decidability properties.

4/14



The highlights
▶ Working constructively in HoTT, we construct two well behaved ordinal

exponentiation functions α(−) with a minor condition on the base ordinal α:
▶ The first construction is abstract, uses suprema of ordinals, and is motivated by

the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element a0
is further required to satisfy the decidability condition: ∀(x : α).(a0 < x) + (a0 = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

▶ We use this equivalence together with univalence (representation
independence) to prove algebraic laws and decidability properties.

4/14



The highlights
▶ Working constructively in HoTT, we construct two well behaved ordinal

exponentiation functions α(−) with a minor condition on the base ordinal α:
▶ The first construction is abstract, uses suprema of ordinals, and is motivated by

the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element a0
is further required to satisfy the decidability condition: ∀(x : α).(a0 < x) + (a0 = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

▶ We use this equivalence together with univalence (representation
independence) to prove algebraic laws and decidability properties.

4/14



The highlights
▶ Working constructively in HoTT, we construct two well behaved ordinal

exponentiation functions α(−) with a minor condition on the base ordinal α:
▶ The first construction is abstract, uses suprema of ordinals, and is motivated by

the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element a0
is further required to satisfy the decidability condition: ∀(x : α).(a0 < x) + (a0 = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

▶ We use this equivalence together with univalence (representation
independence) to prove algebraic laws and decidability properties.

4/14



Commercial break
▶ Our paper is available on arXiv:2501.14542.

▶ All of its results are formalized in the proof assistant Agda. Clicking a 2 next to a
definition, lemma, theorem, etc. in the paper takes you to its formalization.

5/14

https://arxiv.org/abs/2501.14542


Commercial break
▶ Our paper is available on arXiv:2501.14542.

▶ All of its results are formalized in the proof assistant Agda. Clicking a 2 next to a
definition, lemma, theorem, etc. in the paper takes you to its formalization. 5/14

https://arxiv.org/abs/2501.14542


Ordinals in HoTT

▶ An ordinal is a type α with a binary proposition-valued relation < on α that is
transitive, extensional and wellfounded.

Extensionality says that two elements are equal if and only if they have the same
predecessors: x = y if and only if ∀(u : α).u < x ↔ u < y .
Wellfoundedness is defined via an inductive accessibility predicate but is
equivalent to transfinite induction: for any type family P over α and x : α, we
have (∀(y : α). y < x → P y) −→ P x .

▶ Examples of ordinals include 0, 1,N and the type List<(α) of decreasing lists over
any ordinal α.

6/14



Ordinals in HoTT

▶ An ordinal is a type α with a binary proposition-valued relation < on α that is
transitive, extensional and wellfounded.
Extensionality says that two elements are equal if and only if they have the same
predecessors: x = y if and only if ∀(u : α).u < x ↔ u < y .

Wellfoundedness is defined via an inductive accessibility predicate but is
equivalent to transfinite induction: for any type family P over α and x : α, we
have (∀(y : α). y < x → P y) −→ P x .

▶ Examples of ordinals include 0, 1,N and the type List<(α) of decreasing lists over
any ordinal α.

6/14



Ordinals in HoTT

▶ An ordinal is a type α with a binary proposition-valued relation < on α that is
transitive, extensional and wellfounded.
Extensionality says that two elements are equal if and only if they have the same
predecessors: x = y if and only if ∀(u : α).u < x ↔ u < y .
Wellfoundedness is defined via an inductive accessibility predicate but is
equivalent to transfinite induction: for any type family P over α and x : α, we
have (∀(y : α). y < x → P y) −→ P x .

▶ Examples of ordinals include 0, 1,N and the type List<(α) of decreasing lists over
any ordinal α.

6/14



The ordinal of (small) ordinals
▶ A fundamental fact is that for any ordinal α and a : α, the initial segment

α ↓ a :≡ Σ(x : α). x < a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

▶ Setting
α < β :≡ Σ(b : β). α = β ↓ b

makes the type Ord of (small) ordinals into an ordinal itself.
For proving extensionality, we use univalence.

In particular, we can define operations on Ord by transfinite induction.

▶ Moreover, Ord is a poset with

α ≤ β :≡ Σ(f : α → β). ∀(a : A). α ↓ a = β ↓ f a.

7/14



The ordinal of (small) ordinals
▶ A fundamental fact is that for any ordinal α and a : α, the initial segment

α ↓ a :≡ Σ(x : α). x < a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

▶ Setting
α < β :≡ Σ(b : β). α = β ↓ b

makes the type Ord of (small) ordinals into an ordinal itself.
For proving extensionality, we use univalence.

In particular, we can define operations on Ord by transfinite induction.

▶ Moreover, Ord is a poset with

α ≤ β :≡ Σ(f : α → β). ∀(a : A). α ↓ a = β ↓ f a.

7/14



The ordinal of (small) ordinals
▶ A fundamental fact is that for any ordinal α and a : α, the initial segment

α ↓ a :≡ Σ(x : α). x < a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

▶ Setting
α < β :≡ Σ(b : β). α = β ↓ b

makes the type Ord of (small) ordinals into an ordinal itself.
For proving extensionality, we use univalence.

In particular, we can define operations on Ord by transfinite induction.

▶ Moreover, Ord is a poset with

α ≤ β :≡ Σ(f : α → β). ∀(a : A). α ↓ a = β ↓ f a.

7/14



The ordinal of (small) ordinals
▶ A fundamental fact is that for any ordinal α and a : α, the initial segment

α ↓ a :≡ Σ(x : α). x < a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

▶ Setting
α < β :≡ Σ(b : β). α = β ↓ b

makes the type Ord of (small) ordinals into an ordinal itself.
For proving extensionality, we use univalence.

In particular, we can define operations on Ord by transfinite induction.

▶ Moreover, Ord is a poset with

α ≤ β :≡ Σ(f : α → β). ∀(a : A). α ↓ a = β ↓ f a.

7/14



The ordinal of (small) ordinals
▶ A fundamental fact is that for any ordinal α and a : α, the initial segment

α ↓ a :≡ Σ(x : α). x < a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

▶ Setting
α < β :≡ Σ(b : β). α = β ↓ b

makes the type Ord of (small) ordinals into an ordinal itself.
For proving extensionality, we use univalence.

In particular, we can define operations on Ord by transfinite induction.

▶ Moreover, Ord is a poset with

α ≤ β :≡ Σ(f : α → β). ∀(a : A). α ↓ a = β ↓ f a.
7/14



Preliminary constructions of ordinals
▶ Given ordinals α and β, their sum is given by the type α + β and putting

everything in the left component below anything in the right component.

(α + β) ↓ inl a = α ↓ a and (α + β) ↓ inr b = α + (β ↓ b)

▶ Given ordinals α and β, their product is given by the type α × β ordered
lexicographically with the right component taking precedence.

(α × β) ↓ (a, b) = α × (β ↓ b) + (α ↓ a)

▶ Given a family of ordinals F• : I → Ord, we can construct its supremum sup F•.

In particular we have maps [i , −] : Fi ≤ sup F• such that for any y : sup F•

there exists i : I and x : Fi with

y = [i , x ] and sup F• ↓ y = Fi ↓ x .

8/14



Preliminary constructions of ordinals
▶ Given ordinals α and β, their sum is given by the type α + β and putting

everything in the left component below anything in the right component.

(α + β) ↓ inl a = α ↓ a and (α + β) ↓ inr b = α + (β ↓ b)

▶ Given ordinals α and β, their product is given by the type α × β ordered
lexicographically with the right component taking precedence.

(α × β) ↓ (a, b) = α × (β ↓ b) + (α ↓ a)

▶ Given a family of ordinals F• : I → Ord, we can construct its supremum sup F•.

In particular we have maps [i , −] : Fi ≤ sup F• such that for any y : sup F•

there exists i : I and x : Fi with

y = [i , x ] and sup F• ↓ y = Fi ↓ x .

8/14



Preliminary constructions of ordinals
▶ Given ordinals α and β, their sum is given by the type α + β and putting

everything in the left component below anything in the right component.

(α + β) ↓ inl a = α ↓ a and (α + β) ↓ inr b = α + (β ↓ b)

▶ Given ordinals α and β, their product is given by the type α × β ordered
lexicographically with the right component taking precedence.

(α × β) ↓ (a, b) = α × (β ↓ b) + (α ↓ a)

▶ Given a family of ordinals F• : I → Ord, we can construct its supremum sup F•.

In particular we have maps [i , −] : Fi ≤ sup F• such that for any y : sup F•

there exists i : I and x : Fi with

y = [i , x ] and sup F• ↓ y = Fi ↓ x .

8/14



Preliminary constructions of ordinals
▶ Given ordinals α and β, their sum is given by the type α + β and putting

everything in the left component below anything in the right component.

(α + β) ↓ inl a = α ↓ a and (α + β) ↓ inr b = α + (β ↓ b)

▶ Given ordinals α and β, their product is given by the type α × β ordered
lexicographically with the right component taking precedence.

(α × β) ↓ (a, b) = α × (β ↓ b) + (α ↓ a)

▶ Given a family of ordinals F• : I → Ord, we can construct its supremum sup F•.

In particular we have maps [i , −] : Fi ≤ sup F• such that for any y : sup F•

there exists i : I and x : Fi with

y = [i , x ] and sup F• ↓ y = Fi ↓ x .

8/14



Abstract exponentiation
▶ Inspired by the classical definition (and the no-go theorem), we now wish to

construct, for α ≥ 1, an operation α(−) satisfying the specification:
α0 = 1

αβ+1 = αβ × α

αsupi :I Fi = sup
i :I

(αFi ) (if I is inhabited)

▶ Lemma For every ordinal β we have β = supb:β((β ↓ b) + 1).

▶ Idea: If we had αβ, then
αβ = αsupb:β (β↓b) + 1 = 1 ∨ sup

b:β
α(β↓b) + 1 = 1 ∨ sup

b:β

(
αβ↓b × α

)
.

▶ Def. Define abstract exponentiation αβ by transfinite induction in Ord on β as

αβ :≡ sup
x :1+β

{
inl ⋆ 7→ 1
inr b 7→ αβ↓b × α

9/14



Abstract exponentiation
▶ Inspired by the classical definition (and the no-go theorem), we now wish to

construct, for α ≥ 1, an operation α(−) satisfying the specification:
α0 = 1

αβ+1 = αβ × α

αsupi :I Fi = sup
i :I

(αFi ) (if I is inhabited)

▶ Lemma For every ordinal β we have β = supb:β((β ↓ b) + 1).

▶ Idea: If we had αβ, then
αβ = αsupb:β (β↓b) + 1 = 1 ∨ sup

b:β
α(β↓b) + 1 = 1 ∨ sup

b:β

(
αβ↓b × α

)
.

▶ Def. Define abstract exponentiation αβ by transfinite induction in Ord on β as

αβ :≡ sup
x :1+β

{
inl ⋆ 7→ 1
inr b 7→ αβ↓b × α

9/14



Abstract exponentiation
▶ Inspired by the classical definition (and the no-go theorem), we now wish to

construct, for α ≥ 1, an operation α(−) satisfying the specification:
α0 = 1

αβ+1 = αβ × α

αsupi :I Fi = sup
i :I

(αFi ) (if I is inhabited)

▶ Lemma For every ordinal β we have β = supb:β((β ↓ b) + 1).

▶ Idea: If we had αβ, then
αβ = αsupb:β (β↓b) + 1 = 1 ∨ sup

b:β
α(β↓b) + 1 = 1 ∨ sup

b:β

(
αβ↓b × α

)
.

▶ Def. Define abstract exponentiation αβ by transfinite induction in Ord on β as

αβ :≡ sup
x :1+β

{
inl ⋆ 7→ 1
inr b 7→ αβ↓b × α

9/14



Abstract exponentiation
▶ Inspired by the classical definition (and the no-go theorem), we now wish to

construct, for α ≥ 1, an operation α(−) satisfying the specification:
α0 = 1

αβ+1 = αβ × α

αsupi :I Fi = sup
i :I

(αFi ) (if I is inhabited)

▶ Lemma For every ordinal β we have β = supb:β((β ↓ b) + 1).

▶ Idea: If we had αβ, then
αβ = αsupb:β (β↓b) + 1 = 1 ∨ sup

b:β
α(β↓b) + 1 = 1 ∨ sup

b:β

(
αβ↓b × α

)
.

▶ Def. Define abstract exponentiation αβ by transfinite induction in Ord on β as

αβ :≡ sup
x :1+β

{
inl ⋆ 7→ 1
inr b 7→ αβ↓b × α 9/14



Properties of abstract exponentiation

▶ Def. (repeated) Abstract exponentiation αβ is given by transfinite induction on β:

αβ :≡ sup
x :1+β

{
inl ⋆ 7→ 1
inr b 7→ αβ↓b × α

▶ Thm. This transfinite construction satisfies the specification as well as

αβ+γ = αβ × αγ and αβ×γ =
(
αβ

)γ
.

▶ Using the characterization of initial segments of suprema and products, we have
for a : α, b : β and e : αβ↓b that

αβ ↓ [inr b, (e, a)] = αβ↓b × (α ↓ a) + (αβ↓b ↓ e).

10/14



Properties of abstract exponentiation

▶ Def. (repeated) Abstract exponentiation αβ is given by transfinite induction on β:

αβ :≡ sup
x :1+β

{
inl ⋆ 7→ 1
inr b 7→ αβ↓b × α

▶ Thm. This transfinite construction satisfies the specification as well as

αβ+γ = αβ × αγ and αβ×γ =
(
αβ

)γ
.

▶ Using the characterization of initial segments of suprema and products, we have
for a : α, b : β and e : αβ↓b that

αβ ↓ [inr b, (e, a)] = αβ↓b × (α ↓ a) + (αβ↓b ↓ e).

10/14



Concrete exponentiation
▶ Sierpiński classically constructs αβ using the set of functions f : β → α such that

f has finite support: i.e. f b is not the least element a0 only finitely many times.

▶ Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.
The least element a0 : α should not be an output, so we consider

α>0 :≡ Σ(a : α). a > a0

and define concrete exponentiation as

exp(α, β) :≡ Σ(ℓ : List(α>0 × β)). ℓ is decreasing in the β-component.

▶ We require a trichotomous least element a0, i.e. a0 satisfies (a0 < x) + (a0 = x)
for all x : α, to ensure that α>0 and hence exp (α, β) is an ordinal.

11/14



Concrete exponentiation
▶ Sierpiński classically constructs αβ using the set of functions f : β → α such that

f has finite support: i.e. f b is not the least element a0 only finitely many times.

▶ Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.

The least element a0 : α should not be an output, so we consider

α>0 :≡ Σ(a : α). a > a0

and define concrete exponentiation as

exp(α, β) :≡ Σ(ℓ : List(α>0 × β)). ℓ is decreasing in the β-component.

▶ We require a trichotomous least element a0, i.e. a0 satisfies (a0 < x) + (a0 = x)
for all x : α, to ensure that α>0 and hence exp (α, β) is an ordinal.

11/14



Concrete exponentiation
▶ Sierpiński classically constructs αβ using the set of functions f : β → α such that

f has finite support: i.e. f b is not the least element a0 only finitely many times.

▶ Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.
The least element a0 : α should not be an output, so we consider

α>0 :≡ Σ(a : α). a > a0

and define concrete exponentiation as

exp(α, β) :≡ Σ(ℓ : List(α>0 × β)). ℓ is decreasing in the β-component.

▶ We require a trichotomous least element a0, i.e. a0 satisfies (a0 < x) + (a0 = x)
for all x : α, to ensure that α>0 and hence exp (α, β) is an ordinal.

11/14



Concrete exponentiation
▶ Sierpiński classically constructs αβ using the set of functions f : β → α such that

f has finite support: i.e. f b is not the least element a0 only finitely many times.

▶ Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.
The least element a0 : α should not be an output, so we consider

α>0 :≡ Σ(a : α). a > a0

and define concrete exponentiation as

exp(α, β) :≡ Σ(ℓ : List(α>0 × β)). ℓ is decreasing in the β-component.

▶ We require a trichotomous least element a0, i.e. a0 satisfies (a0 < x) + (a0 = x)
for all x : α, to ensure that α>0 and hence exp (α, β) is an ordinal.

11/14



Concrete exponentiation
▶ Sierpiński classically constructs αβ using the set of functions f : β → α such that

f has finite support: i.e. f b is not the least element a0 only finitely many times.

▶ Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.
The least element a0 : α should not be an output, so we consider

α>0 :≡ Σ(a : α). a > a0

and define concrete exponentiation as

exp(α, β) :≡ Σ(ℓ : List(α>0 × β)). ℓ is decreasing in the β-component.

▶ We require a trichotomous least element a0, i.e. a0 satisfies (a0 < x) + (a0 = x)
for all x : α, to ensure that α>0 and hence exp (α, β) is an ordinal.

11/14



Properties of abstract and concrete exponentiation

▶ Thm. Concrete exponentiation satisfies the specification.

Some other algebraic properties proved tedious to establish rigorously.

▶ Thm. Concrete exponentiation obviously preserves decidability properties,
e.g. if α and β have decidable equality, then so does exp (α, β).

This is not at all obvious for abstract exponentiation.

▶ Thankfully, abstract and concrete exponentiation agree!*

So we can transfer properties from one construction to the other and make use
of their particular advantages.

* When the base ordinal has a trichotomous least element

12/14



Properties of abstract and concrete exponentiation

▶ Thm. Concrete exponentiation satisfies the specification.

Some other algebraic properties proved tedious to establish rigorously.

▶ Thm. Concrete exponentiation obviously preserves decidability properties,
e.g. if α and β have decidable equality, then so does exp (α, β).

This is not at all obvious for abstract exponentiation.

▶ Thankfully, abstract and concrete exponentiation agree!*

So we can transfer properties from one construction to the other and make use
of their particular advantages.

* When the base ordinal has a trichotomous least element

12/14



Properties of abstract and concrete exponentiation

▶ Thm. Concrete exponentiation satisfies the specification.

Some other algebraic properties proved tedious to establish rigorously.

▶ Thm. Concrete exponentiation obviously preserves decidability properties,
e.g. if α and β have decidable equality, then so does exp (α, β).

This is not at all obvious for abstract exponentiation.

▶ Thankfully, abstract and concrete exponentiation agree!*

So we can transfer properties from one construction to the other and make use
of their particular advantages.

* When the base ordinal has a trichotomous least element

12/14



Proving that abstract and concrete exponentiation agree
▶ The key idea is to characterize initial segments.

▶ Recall that αβ ↓ [inr b, (e, a)] = αβ↓b × (α ↓ a) + (αβ↓b ↓ e).

▶ For concrete exponentiation we can prove
exp (α, β) ↓ ((a, b) :: ιb ℓ) = exp (α, β ↓ b) × (α ↓ a) + exp (α, β ↓ b) ↓ ℓ

where ιb : exp (α, β ↓ b) ↪→ exp (α, β) is the obvious inclusion.
Notice the similarity to the above equation!

▶ A proof by transfinite induction in Ord on β then shows:

Thm. For α with a trichotomous least element and β we have exp (α, β) = αβ.

▶ The equality exp (α, β) = αβ induces a function exp (α, β) → αβ which we show
to coincide with a natural denotation map that captures the intuition that a list
in exp (α, β) is a concrete representation of an abstract element of αβ.

13/14



Proving that abstract and concrete exponentiation agree
▶ The key idea is to characterize initial segments.

▶ Recall that αβ ↓ [inr b, (e, a)] = αβ↓b × (α ↓ a) + (αβ↓b ↓ e).

▶ For concrete exponentiation we can prove
exp (α, β) ↓ ((a, b) :: ιb ℓ) = exp (α, β ↓ b) × (α ↓ a) + exp (α, β ↓ b) ↓ ℓ

where ιb : exp (α, β ↓ b) ↪→ exp (α, β) is the obvious inclusion.
Notice the similarity to the above equation!

▶ A proof by transfinite induction in Ord on β then shows:

Thm. For α with a trichotomous least element and β we have exp (α, β) = αβ.

▶ The equality exp (α, β) = αβ induces a function exp (α, β) → αβ which we show
to coincide with a natural denotation map that captures the intuition that a list
in exp (α, β) is a concrete representation of an abstract element of αβ.

13/14



Proving that abstract and concrete exponentiation agree
▶ The key idea is to characterize initial segments.

▶ Recall that αβ ↓ [inr b, (e, a)] = αβ↓b × (α ↓ a) + (αβ↓b ↓ e).

▶ For concrete exponentiation we can prove
exp (α, β) ↓ ((a, b) :: ιb ℓ) = exp (α, β ↓ b) × (α ↓ a) + exp (α, β ↓ b) ↓ ℓ

where ιb : exp (α, β ↓ b) ↪→ exp (α, β) is the obvious inclusion.
Notice the similarity to the above equation!

▶ A proof by transfinite induction in Ord on β then shows:

Thm. For α with a trichotomous least element and β we have exp (α, β) = αβ.

▶ The equality exp (α, β) = αβ induces a function exp (α, β) → αβ which we show
to coincide with a natural denotation map that captures the intuition that a list
in exp (α, β) is a concrete representation of an abstract element of αβ.

13/14



Proving that abstract and concrete exponentiation agree
▶ The key idea is to characterize initial segments.

▶ Recall that αβ ↓ [inr b, (e, a)] = αβ↓b × (α ↓ a) + (αβ↓b ↓ e).

▶ For concrete exponentiation we can prove
exp (α, β) ↓ ((a, b) :: ιb ℓ) = exp (α, β ↓ b) × (α ↓ a) + exp (α, β ↓ b) ↓ ℓ

where ιb : exp (α, β ↓ b) ↪→ exp (α, β) is the obvious inclusion.
Notice the similarity to the above equation!

▶ A proof by transfinite induction in Ord on β then shows:

Thm. For α with a trichotomous least element and β we have exp (α, β) = αβ.

▶ The equality exp (α, β) = αβ induces a function exp (α, β) → αβ which we show
to coincide with a natural denotation map that captures the intuition that a list
in exp (α, β) is a concrete representation of an abstract element of αβ.

13/14



Wrapping up
▶ We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

▶ Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

▶ In the paper we further mark the limits of a constructive treatment by
presenting no-go theorems that show the law of excluded middle to be equivalent
to certain statements about ordinal exponentiation.

▶ Natural question: can we fuse the two constructions and use quotiented lists
to define ordinal exponentiation for base ordinals that do not necessarily have a
trichotomous least element?

Thank you!
arXiv:2501.14542

14/14

https://arxiv.org/abs/2501.14542


Wrapping up
▶ We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

▶ Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

▶ In the paper we further mark the limits of a constructive treatment by
presenting no-go theorems that show the law of excluded middle to be equivalent
to certain statements about ordinal exponentiation.

▶ Natural question: can we fuse the two constructions and use quotiented lists
to define ordinal exponentiation for base ordinals that do not necessarily have a
trichotomous least element?

Thank you!
arXiv:2501.14542

14/14

https://arxiv.org/abs/2501.14542


Wrapping up
▶ We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

▶ Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

▶ In the paper we further mark the limits of a constructive treatment by
presenting no-go theorems that show the law of excluded middle to be equivalent
to certain statements about ordinal exponentiation.

▶ Natural question: can we fuse the two constructions and use quotiented lists
to define ordinal exponentiation for base ordinals that do not necessarily have a
trichotomous least element?

Thank you!
arXiv:2501.14542

14/14

https://arxiv.org/abs/2501.14542


Wrapping up
▶ We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

▶ Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

▶ In the paper we further mark the limits of a constructive treatment by
presenting no-go theorems that show the law of excluded middle to be equivalent
to certain statements about ordinal exponentiation.

▶ Natural question: can we fuse the two constructions and use quotiented lists
to define ordinal exponentiation for base ordinals that do not necessarily have a
trichotomous least element?

Thank you!
arXiv:2501.14542

14/14

https://arxiv.org/abs/2501.14542


Wrapping up
▶ We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

▶ Thanks to univalence we can transfer various results, such as algebraic laws
and decidability properties, from one construction to the other.

▶ In the paper we further mark the limits of a constructive treatment by
presenting no-go theorems that show the law of excluded middle to be equivalent
to certain statements about ordinal exponentiation.

▶ Natural question: can we fuse the two constructions and use quotiented lists
to define ordinal exponentiation for base ordinals that do not necessarily have a
trichotomous least element?

Thank you!
arXiv:2501.14542

14/14

https://arxiv.org/abs/2501.14542


References

[1] Peter Aczel. ‘An introduction to inductive definitions’. In: Handbook of Mathematical Logic. Ed. by Jon Barwise. Vol. 90. Studies in Logic
and the Foundations of Mathematics. North-Holland Publishing Company, 1977, pp. 739–782. doi: 10.1016/S0049-237X(08)71120-0.

[2] Peter Dybjer and Anton Setzer. ‘A Finite Axiomatization of Inductive-Recursive Definitions’. In: Typed Lambda Calculi and Applications. 4th
International Conferene, TLCA’99, L’Aquila, Italy, April 1999, Proceedings. Ed. by Jean-Yves Girard. Vol. 1581. Lecture Notes in Computer
Science. Springer, 1999, pp. 129–146. doi: 10.1007/3-540-48959-2_11.

[3] Martín Hötzel Escardó et al. ‘Ordinals in univalent type theory in Agda notation’. Agda development, HTML rendering available at:
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.index.html. Since 2018. url:
https://github.com/martinescardo/TypeTopology.

[4] Robert W. Floyd. ‘Assigning meanings to programs’. In: Mathematical Aspects of Computer Science. Ed. by J. T. Schwartz. Vol. 19.
Proceedings of Symposia in Applied Mathematics. American Mathematical Society, 1967, pp. 19–32. doi: 10.1090/psapm/019/0235771.

[5] Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu. ‘Type-Theoretic Approaches to Ordinals’. In: Theoretical Computer Science 957
(2023). doi: 10.1016/j.tcs.2023.113843. arXiv: 2208.03844 [cs.LO].

[6] Michael Rathjen. ‘The art of ordinal analysis’. In: Proceedings of the International Congress of Mathematicians. Madrid 2006. Vol. 2.
European Mathematical Society Publishing House, 2007, pp. 45–69. doi: 10.4171/022-2/3.

[7] Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study:
https://homotopytypetheory.org/book, 2013.

https://doi.org/10.1016/S0049-237X(08)71120-0
https://doi.org/10.1007/3-540-48959-2_11
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.index.html
https://github.com/martinescardo/TypeTopology
https://doi.org/10.1090/psapm/019/0235771
https://doi.org/10.1016/j.tcs.2023.113843
https://arxiv.org/abs/2208.03844
https://doi.org/10.4171/022-2/3
https://homotopytypetheory.org/book

	References

