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Overview

Working inside HoTT, we have two goals:

1. Show that the set-theoretic ordinals coincide with the
type-theoretic ordinals.

» By set-theoretic ordinal we mean a hereditarily transitive set as
in constructive set theory (Powell'75, Aczel-Rathjen'10).

» By type-theoretic ordinal we mean the ordinals developed in
the HoTT Book and further by Escardé and collaborators in
the Agda development TypeTopology.

2. Generalize the above correspondence to all sets in the
cumulative hierarchy by considering certain extensional
wellfounded relations.

N

N



Ordinals in homotopy type theory

» In HoTT, a (type-theoretic) ordinal is defined as a type X
with a prop-valued binary relation < that is transitive,
extensional and wellfounded.

» Extensionality means that we have
x=y <= Y(u: X).(u<x < u<y)

It follows that X is an hset.

» Wellfoundedness is defined in terms of accessibility, but is
equivalent to the assertion that for every P : X — U, we have
M(x : X).P(x) as soon as
MN(x : X).(N(y : X).(y < x = P(y))) = P(x).

» For example, (N, <) is a type-theoretic ordinal.



The ordinal of type-theoretic ordinals

» We write Ord for the type of (small) type-theoretic ordinals.

» We make this type into a (large) type-theoretic ordinal itself:

The relation < on Ord given by

a < <= « is an initial segment of

= Z(y:B8)(a=p1ly)

is transitive, wellfounded and extensional, where we write
[ |y for the (sub)ordinal X(x : 3).(x < y).



Ordinals in set theory

> Def. A set x is transitive if for every y € x and z € y, we
have z € x.

» Def. A set-theoretic ordinal is a transitive set whose elements
are all transitive.

» Lemma The elements of a set-theoretic ordinal are again
set-theoretic ordinals.
Thus, a set is a set-theoretic ordinal if and only if it is
hereditarily transitive.

> Ex. Thesets (), {0} and {0), {0} } are all set-theoretic ordinals,
but {0, {0}, {{0}}} isn't, as {{0)}} is a non-transitive member.
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The cumulative hierarchy in HoTT

» HoTT hosts a model (V, €) of a constructive set theory,
known as the cumulative hierarchy.

The type V is a HIT with point-constructor
V-set(A,f):V for A:Uand f: A=V

quotiented by bisimilarity: V-set(A, f) and V-set(B, g) are
identified exactly when f and g have the same image.

» For example, the empty set is represented by V-set (0, 0-rec),
and if x : V, then the singleton {x} is represented by
V-set(1, A(v : 1).x).
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The ordinal of set-theoretic ordinals

> We define set-membership € : V — V — Prop by

x € V-set(A,f) = (a: A).f(a) = x

» Using €, we define the subtype V4 of V of set-theoretic
ordinals in HoTT.

» The cumulative hierarchy V validates the axioms of
€-extensionality and €-induction.

Since V4 is restricted to hereditarily transitive sets, we get:

(Vord, €) is a type-theoretic ordinal.



Set-theoretic and type-theoretic ordinals coincide

» Thm. The type-theoretic ordinals (Vq.q, €) and (Ord, <)
are equal.

Thus, in HoTT,
set-theoretic and type-theoretic ordinals coincide.



From type-theoretic ordinals to set-theoretic ordinals

» Define ® : Ord — V4 by transfinite recursion:
®(a) = V-set(a, AM(a: a).®(a | a)).

» This is well-defined, because (« | a) < « (by definition of <)
and the fact that < is wellfounded.



From set-theoretic ordinals to type-theoretic ordinals

» The map V : Vg4 — Ord is the rank function:

V(V-set(A, f)) = \/(V(f(a)) + 1),
a:A

where \/ denotes the supremum of ordinals, which may be
constructed as a quotient of the sum ¥ ,.4(V(f(a)) + 1).

P It is possible to give nonrecursive descriptions of the rank:
VU(x)~X(y:V)yex and V(V-set(Af))=A/~,

where a ~ b <= f(a) = f(b). (But be careful about size.)



Set-theoretic and type-theoretic ordinals coincide

» Thm. The type-theoretic ordinals (Vg.q4, €) and (Ord, <)
are equal.

» Proof sketch The maps ¢ : Ord — Vg and ¥ : V,q — Ord
give an isomorphism of ordinals. In particular,

a=<pf <= O(a)ed(f) and xey <= VY(x) < V(y).



Capturing all of the cumulative hierarchy

» Can we realize the full cumulative hierarchy V as a type of
ordered structures?
That is, can we find a type making the square

Vord é Ord

[

V—= 37

commute?



Capturing all of the cumulative hierarchy

» Can we realize the full cumulative hierarchy V as a type of
ordered structures?
That is, can we find a type making the square

Vord é Ord

[

V—= 37

commute?

P An initial naive attempt may be to simply drop transitivity,
i.e., to take

? = type of extensional wellfounded relations.



Why extensionality and wellfoundedness are not enough

» The two elements ) and {(} are present in both the sets

{0,{0}} and {{0}}.

» But there is only one two-element extensional and wellfounded
relation, namely 0 < 1.

» Therefore, we consider extensional wellfounded relations
(A, <) with a marking: a predicate on A that picks out the
top-level elements of a set.

» For example, for {(), {0} } we mark both 0 and 1, but for
{{0}} we only mark 1.

» A marking is covering if any element can be reached from a
marked element, i.e., if the relation contains no “junk”.



Covered marked extensional wellfounded relations

> We write MEWO,,, for the type of covered marked
extensional wellfounded order relations.

» Every ordinal can be equipped with the trivial covering by
marking everything. Thus, the type Ord of ordinals is a
subtype of MEWO,,,.

» The idea of encoding sets as wellfounded structures isn't new,
cf. Osius'74, Aczel'77 and '88, Taylor'96, Adamek et al13.

» The above approach worked well for our purposes of
generalizing the theory of ordinals.



Capturing the full cumulative hierarchy

» The pair (V, €) is a (trivially covered) mewo, thanks to
€-extensionality and €-induction.

» The type MEWO,,, is a (large, trivially covered) mewo itself:
The relation < on MEWO,,, given by

A< B<+= Y(y: Bnaked)-(A=B |l y)

is wellfounded and extensional, where we write B | y for the
mewo ¥ (x : B).(x < y) whose marked elements are precisely
the immediate predecessors of y.

> We get the bottom isomorphism by generalizing the
constructions used to establish Vg4 ~ Ord:

Vord —— Ord

I J

V —=— MEWO¢,



From mewos to V-sets

» Recall the map ¢ : Ord — V4 defined as

d(a) = V-set(a, AM(a: a).®(a ] a)).

» Similarly, we define ® : MEWO,o, — V as

» The diagram

Ord —2 s Vgq

L]

MEWO, —2— V

commutes.

B(A) = V-set (A, A(a: A).B(A L a)).
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From V-sets to mewos

» Recall the map V : V,q — Ord defined as

V(V-set(A, ) = \/(V(f(a)) +1),
a:A

where \/ denotes the supremum of ordinals.

» To emulate the above for V and MEWO,.,, we introduce
unions and singletons of mewos.

» We then define U : V — MEWO,,, as

W(V-set(A, f)) = [ J{P(F(a))}).

a:A



Singleton mewos

» Translated to set-theory, the successor operation (—) + 1 on
ordinals corresponds to S +— S U {S}.

The union is necessary to ensure transitivity.

» Given a mewo X, we define the singleton mewo {X}:
Its carrier is X + 1, its relation is given by
> inlx <inly < x <y,
» inlx <inrx <= x is marked,
P inrx < y is false for all y, and

with inrx the only marked element.

» Lemma If X is covered, then so is {X}.
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The full cumulative hierarchy and covered mewos coincide

» Thm. The covered mewos (MEWO,,, <) and (V, €)
are equal.

» The theorem generalizes the correspondence between ordinals,
as witnessed by commutative diagram

~

(Vord, €) ——— (Ord, <)

I |

~

(V,e) —— (MEWOcoy, <)



Conclusion

» In HoTT, the set-theoretic ordinals in V coincide with the
type-theoretic ordinals.

» By generalizing from type-theoretic ordinals to covered
mewos, we capture all sets in V.

» Question: Do the type-theoretic ordinals in the cubical sets
model of HoTT coincide with the set-theoretic ordinals?

» Question: Can we similarly capture non-wellfounded sets as
certain graphs in HoTT?

» [3 Set-Theoretic and Type-Theoretic Ordinals Coincide. TdJ,
Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu.
arXiv:2301.10696. Accepted for presentation at L/ICS'23.
Fully formalized in AGDA.
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https://arxiv.org/abs/2301.10696
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