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Epimorphisms and acyclic types
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▶ We develop the synthetic homotopy theory of acyclic types.
Classically, acyclic spaces are used in
▶ Quillen’s plus construction,
▶ the Kan–Thurston theorem, and
▶ the Barratt–Priddy(–Quillen) theorem.

▶ We turn to algebraic topology to answer a question about
(potentially higher) types:
What are the epimorphisms of types?
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Epimorphisms

▶ In 1-category theory, a map f : A → B is an epi(morphism) if
for every g , h : B → C we have

g ◦ f = h ◦ f =⇒ g = h.

In other words, (−) ◦ f is an injection.

▶ Note:
A B
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⇐⇒ f is an epi

▶ Def. A map f : A → B is an epi if (−) ◦ f is an embedding.
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(Non)examples of epimorphisms

▶ While the map 2 → 1 is surjective and an epi of sets, it is not
an epi of types.
It is not an epi, because the type of (dashed) extensions

2 1

S1

[base,base]

is not a proposition, as it is equivalent to∑
x :S1

(x = base) × (x = base) ≃ (base = base) ≃ Z.

▶ Nontrivial examples of epis will be presented later.
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Epimorphisms and pushouts
▶ Lemma A map f : A → B is an epi if and only if the square

A B

B B

f

f id

id

is a pushout.

▶ Cor. A map f : A → B is epic if and only if its codiagonal ∇f
is an equivalence.
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Acyclic types and maps

▶ Def. The suspension ΣA of a type A is the pushout

A 1

1 ΣA
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S

⌜
a b

N

S

▶ Def. A type A is acyclic if its suspension ΣA is contractible.

▶ Def. A map is acyclic if all its fibers are.
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Acyclicity and codiagonals
▶ Lemma The codiagonal is the fiberwise suspension:

if f : A → B, then fib∇f (b) ≃ Σ fibf (b).

▶ Proof. By descent we can pull back the pushout square

A B

B B +A B

B

f

f inr id
inl

id

⌜

∇f

along 1 b−→ B to get the pushout square

fibf (b) 1

1 fib∇f (b)
⌜

fibf (b) 1

A B
⌟ b

f

which is the defining pushout for the suspension.
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The epimorphisms are the acyclic maps

▶ Thm. A map is an epi if and only if it is acylic.

▶ Proof. f : A → B is an epi

⇐⇒
A B

B B

f

f id

id

is a pushout

⇐⇒ ∇f : B +A B → B is an equivalence

⇐⇒ fib∇f (b) is contractible for all b : B

⇐⇒ Σ fibf (b) is contractible for all b : B

⇐⇒ f is acyclic.
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Closure properties
▶ Every equivalence is an epi.

▶ The epis (equivalently, acyclic maps) satisfy a 3-for-2 property:
for f acyclic, the composite g ◦ f is acyclic if and only if g is.

▶ Epis are stable under pushouts along arbitrary maps.

▶ Thanks to the theorem, being epic is a fiberwise notion.
Thus, epis are stable under pullbacks and retracts.

▶ It also follows that epimorphisms satisfy the
precomposition-embedding property for dependent maps:
Precomposition by f : A → B is an embedding∏

b:B
P(b)

(−)◦f
↪−−−→

∏
a:A

P(f (a))

for all P : B → Type.
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No acyclic sets

▶ Thm. A set is acyclic if and only if it is contractible.

▶ Thus, discard sets when looking for interesting acyclic types.
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No acyclic sets
▶ Thm. A set is acyclic if and only if it is contractible.

▶ Proof. Let G be the free group on an acyclic set A with
inclusion of generators η : A ↪→ G . If A is acyclic, then A → 1
is an epi, so the constant map

BG → (A → BG) x 7→ λ(a : A).x
is an embedding. Hence, the constant map G → (A → G) is
an equivalence. Thus,

η(x) = η(y) ∀ x , y : A.

But η is also an embedding (†), so A must be a subsingleton.
Finally, A is also inhabited, because it is acyclic.

▶ (†) This was shown constructively by Mines, Richman and
Ruitenburg; formalized in Agda by Escardó (j.w.w. Bezem,
Coquand and Dybjer) and a new synthetic proof was recently
given by Wärn.
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Relation to connectedness

▶ Prop. Every acyclic type is (0-)connected.

▶ Prop. Every 1-connected (i.e. simply connected) acyclic type
is ∞-connected.
Thus, assuming Whitehead’s Principle, every 1-connected
acyclic type is contractible.

▶ So we should turn to 0-connected types for acyclicity.
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Relation to connectedness

▶ Prop. Every 1-connected (i.e. simply connected) acyclic type
is ∞-connected.
Thus, assuming Whitehead’s Principle, every 1-connected
acyclic type is contractible.

▶ Proof. By the Freudenthal suspension theorem, the unit
σ : A → ΩΣA of the loop-suspension adjunction is
2n-connected whenever A is n-connected (for n ≥ 0).

If A is acyclic, then ΣA ≃ 1 and ΩΣA ≃ 1, so the
connectedness of σ is that of A.

Now if A is also 1-connected, then σ, and hence A, is in turn
2-connected, then 4-connected, etc., hence 2n-connected for
all n.
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First example of a nontrivial acyclic type

▶ A non-trivial example of an acyclic space can by found in
Hatcher’s textbook (Ex. 2.38).

▶ In HoTT, we can import this as a HIT X with constructors:

pt : X
a, b : pt = pt

r : a5 = b3

s : b3 = (ab)2

▶ Why is X nontrivial?

▶ Why is X acyclic?
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Nontriviality of Hatcher’s example
▶ Definition of X as a HIT:

pt : X a, b : pt = pt r : a5 = b3 s : b3 = (ab)2

▶ We define a map from X to the classifying type BA5 of the
alternating group on 5 elements:
On paths, this is defined by

(pt =X pt) → A5

a 7→ (12345)
b 7→ (254)

which can be shown to respect the relations r and s.

▶ These cycles generate A5, so the map on paths is surjective.
Hence, X must be nontrivial.
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Acyclicity of Hatcher’s example

▶ Definition of X as a HIT:

pt : X a, b : pt = pt r : a5 = b3 s : b3 = (ab)2

▶ We study the suspension ΣX as a HIT and simplify:

N, S : ΣX
mpt : N = S

...

Contr. at (N, mpt)

N : ΣX
ma, mb : reflN = reflN

mr : m5
a = m3

b

ms : m3
b = (ma mb)2
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Acyclicity of Hatcher’s example (continued)
▶ The crux is that higher homotopy groups are abelian by the

Eckmann–Hilton (EH) argument.

N : ΣX
ma, mb : reflN = reflN

mr : m5
a = m3

b

ms : m3
b = (ma mb)2

EH

N : ΣX
ma, mb : reflN = reflN

mr : m5
a = m3

b

ms : mb = m2
a

▶ And we can contract again:

N : ΣX
ma, mb : reflN = reflN

mr : m5
a = m3

b

ms : mb = m2
a

Contr. at (mb , ms)
N : ΣX

ma : reflN = reflN

mr : m5
a = m6

a
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Acyclicity of Hatcher’s example (continued)
▶ We can simplify

N : ΣX
ma : reflN = reflN

mr : m5
a = m6

a

N : ΣX
ma : reflN = reflN

mr : ma = reflreflN

and finally, contract once again:

N : ΣX
ma : reflN = reflN

mr : ma = reflreflN

Contr. at (ma, mr )
N : ΣX

▶ Thus, the suspension ΣX of X is equivalent to a single point
and X is acyclic.
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The Higman group: an acyclic classifying type
▶ The Higman group is defined as the group with 4 generators

a, b, c, d and 4 relations

ra : a = [d , a] rb : b = [a, b] rc : c = [b, c] rd : d = [c, d ],

where [x , y ] ≡ xyx−1y−1 denotes the commutator.

▶ In HoTT we can describe its classifying type BH as a HIT:

pt : BH
a, b, c, d : pt = pt

ra : a = [d , a]
rb : a = [a, b]
rc : a = [b, c]
rd : a = [c, d ]
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Acyclicity and nontriviality of the Higman HIT

▶ The commutators become trivial in the suspension by
Eckmann–Hilton, so as with Hatcher’s example, the type BH
is seen to be acyclic.

▶ Why is BH a nontrivial type?
For n ≤ 3 generators and relations, the resulting group turns
out to be trivial!

▶ Classical proofs of the nontriviality of Higman’s group rely on
combinatorial group theory and show that all generators
a, b, c, d have infinite order in H.
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Nontriviality of the Higman group via descent and pushouts
▶ We can completely avoid classical combinatorial group theory

using descent and David Wärn’s recent results on identity
types of pushouts.

▶ Thm. (Wärn) Given a pushout square

R B

A A +R B
f

g

inr

inl

⌜

with f and g 0-truncated maps of 1-types, the pushout
A +R B is again a 1-type and inl and inr are 0-truncated.

▶ We can (re)construct BH as a series of such pushout squares.

▶ It also follows that BH is a 1-type: no need to truncate!
19/21



Summary

At higher types, the notion of epimorphism

▶ becomes quite strong,

▶ coincides with the notion of an acyclic map, and

▶ is interesting from the p.o.v. of synthetic homotopy theory.
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Additional and future work
▶ Do the acyclic maps form an accessible modality?

▶ Many properties seem to need an additional axiom:
Plus Principle: Every acyclic and simply connected type

is contractible.
It follows from Whitehead’s Principle (WP) and was
highlighted by Hoyois in ∞-topos theory.

▶ We believe that plus-constructions can be performed in HoTT
assuming WP, Sets Cover, and Countable Choice.

▶ Use the theory of binate groups to prove acyclicity of some
infinitely presented groups?

▶ We also study k-epimorphisms and k-acyclic types.
(Similar to k-equivalences and k-connected maps.)
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