On epimorphisms and acyclic types in HoTT

 ${\sf UIrik\ Buchholtz^1\quad \underline{Tom\ de\ Jong^1\quad Egbert\ Rijke^2}}$

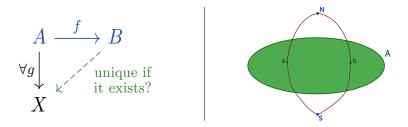
¹University of Nottingham, UK
²University of Ljubljana, Slovenia

Second International Conference on Homotopy Type Theory (HoTT)

Carnegie Mellon University, Pittsburgh, USA

25 May 2023

Epimorphisms and acyclic types



- ► We develop the synthetic homotopy theory of acyclic types. Classically, acyclic spaces are used in
 - Quillen's plus construction,
 - ▶ the Kan-Thurston theorem, and
 - ▶ the Barratt-Priddy(-Quillen) theorem.
- We turn to algebraic topology to answer a question about (potentially higher) types:
 What are the epimorphisms of types?

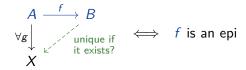
Epimorphisms

▶ In 1-category theory, a map $f: A \to B$ is an epi(morphism) if for every $g, h: B \to C$ we have

$$g \circ f = h \circ f \Longrightarrow g = h.$$

In other words, $(-) \circ f$ is an injection.

► Note:

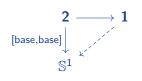


▶ <u>Def.</u> A map $f: A \rightarrow B$ is an epi if $(-) \circ f$ is an embedding.

(Non)examples of epimorphisms

▶ While the map $2 \rightarrow 1$ is surjective and an epi of sets, it is *not* an epi of types.

It is not an epi, because the type of (dashed) extensions



is not a proposition, as it is equivalent to

$$\sum_{x:\mathbb{S}^1} (x = \mathsf{base}) \times (x = \mathsf{base}) \simeq (\mathsf{base} = \mathsf{base}) \simeq \mathbb{Z}.$$

Nontrivial examples of epis will be presented later.

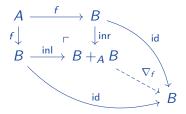
Epimorphisms and pushouts

▶ Lemma A map $f : A \rightarrow B$ is an epi if and only if the square

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
f \downarrow & & \downarrow \text{id} \\
B & \xrightarrow{\text{id}} & B
\end{array}$$

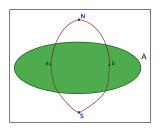
is a pushout.

▶ Cor. A map $f: A \rightarrow B$ is epic if and only if its codiagonal ∇_f is an equivalence.



Acyclic types and maps

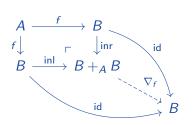
▶ $\underline{\text{Def}}$. The suspension ΣA of a type A is the pushout



- ▶ $\underline{\mathsf{Def}}$. A type A is acyclic if its suspension ΣA is contractible.
- ▶ <u>Def</u>. A map is acyclic if all its fibers are.

Acyclicity and codiagonals

- ▶ Lemma The codiagonal is the fiberwise suspension: if $f: A \to B$, then $\operatorname{fib}_{\nabla_f}(b) \simeq \Sigma \operatorname{fib}_f(b)$.
- ▶ Proof. By descent we can pull back the pushout square



along $1 \xrightarrow{b} B$ to get the *pushout* square

$$egin{array}{cccc} \mathsf{fib}_f(b) & \longrightarrow \mathbf{1} & & & \mathsf{fib}_f(b) & \rightarrow \mathbf{1} \ \downarrow & & \downarrow \downarrow b \ \mathbf{1} & \longrightarrow \mathsf{fib}_{
abla_f}(b) & & & A & \longrightarrow B \end{array}$$

which is the defining pushout for the suspension.

The epimorphisms are the acyclic maps

- ▶ Thm. A map is an epi if and only if it is acylic.
- ▶ Proof. $f: A \rightarrow B$ is an epi

$$\iff \begin{array}{ccc} A \stackrel{f}{\rightarrow} B \\ \downarrow_{\mathsf{id}} & \downarrow_{\mathsf{id}} \mathsf{is a pushout} \\ B \underset{\mathsf{id}}{\rightarrow} B \end{array}$$

$$\iff \nabla_f : B +_A B \to B$$
 is an equivalence

$$\iff$$
 fib $\nabla_f(b)$ is contractible for all $b:B$

$$\iff \Sigma \operatorname{fib}_f(b)$$
 is contractible for all $b: B$

$$\iff$$
 f is acyclic.

Closure properties

- Every equivalence is an epi.
- The epis (equivalently, acyclic maps) satisfy a 3-for-2 property: for f acyclic, the composite $g \circ f$ is acyclic if and only if g is.
- Epis are stable under pushouts along arbitrary maps.
- ► Thanks to the theorem, being epic is a fiberwise notion. Thus, epis are stable under pullbacks and retracts.
- ▶ It also follows that epimorphisms satisfy the precomposition-embedding property for dependent maps: Precomposition by $f: A \rightarrow B$ is an embedding

$$\prod_{b:B} P(b) \stackrel{(-)\circ f}{\longleftrightarrow} \prod_{a:A} P(f(a))$$

for all $P: B \to \mathsf{Type}$.

No acyclic sets

- ▶ <u>Thm</u>. A set is acyclic if and only if it is contractible.
- ▶ Thus, discard sets when looking for interesting acyclic types.

No acyclic sets

- ▶ Thm. A set is acyclic if and only if it is contractible.
- ▶ Proof. Let G be the free group on an acyclic set A with inclusion of generators $\eta: A \hookrightarrow G$. If A is acyclic, then $A \to \mathbf{1}$ is an epi, so the constant map

$$BG \rightarrow (A \rightarrow BG)$$
 $x \mapsto \lambda(a:A).x$

is an embedding. Hence, the constant map G o (A o G) is an equivalence. Thus,

$$\eta(x) = \eta(y) \qquad \forall x, y : A.$$

But η is also an embedding (†), so A must be a subsingleton. Finally, A is also inhabited, because it is acyclic.

(†) This was shown constructively by Mines, Richman and Ruitenburg; formalized in Agda by Escardó (j.w.w. Bezem, Coquand and Dybjer) and a new synthetic proof was recently given by Wärn.

Relation to connectedness

- ▶ Prop. Every acyclic type is (0-)connected.
- Prop. Every 1-connected (i.e. simply connected) acyclic type is ∞-connected.

Thus, assuming Whitehead's Principle, every 1-connected acyclic type is contractible.

▶ So we should turn to 0-connected types for acyclicity.

Relation to connectedness

Prop. Every 1-connected (i.e. simply connected) acyclic type is ∞-connected.

Thus, assuming Whitehead's Principle, every 1-connected acyclic type is contractible.

▶ <u>Proof.</u> By the Freudenthal suspension theorem, the unit $\sigma: A \to \Omega \Sigma A$ of the loop-suspension adjunction is 2n-connected whenever A is n-connected (for $n \ge 0$).

If A is acyclic, then $\Sigma A \simeq \mathbf{1}$ and $\Omega \Sigma A \simeq \mathbf{1}$, so the connectedness of σ is that of A.

Now if A is also 1-connected, then σ , and hence A, is in turn 2-connected, then 4-connected, etc., hence 2^n -connected for all n.

First example of a nontrivial acyclic type

- ▶ A non-trivial example of an acyclic space can by found in Hatcher's textbook (Ex. 2.38).
- ▶ In HoTT, we can import this as a HIT X with constructors:

pt: X

$$a, b : pt = pt$$

 $r : a^5 = b^3$
 $s : b^3 = (ab)^2$

- ▶ Why is X nontrivial?
- ▶ Why is *X* acyclic?

Nontriviality of Hatcher's example

Definition of X as a HIT:

pt:
$$X$$
 $a, b : pt = pt$ $r : a^5 = b^3$ $s : b^3 = (ab)^2$

▶ We define a map from X to the classifying type BA_5 of the alternating group on 5 elements:

On paths, this is defined by

$$(\mathsf{pt} =_{\mathsf{X}} \mathsf{pt}) o A_5$$
 $a \mapsto (12345)$ $b \mapsto (254)$

which can be shown to respect the relations r and s.

► These cycles generate A₅, so the map on paths is surjective. Hence, X must be nontrivial.

Acyclicity of Hatcher's example

Definition of X as a HIT:

```
pt: X  a, b : pt = pt  r : a^5 = b^3  s : b^3 = (ab)^2
```

• We study the suspension ΣX as a HIT and simplify:

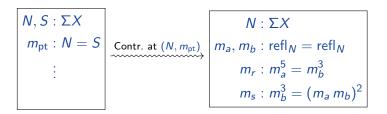
$$N, S : \Sigma X$$
 $m_{\text{pt}} : N = S$
 \vdots

Acyclicity of Hatcher's example

Definition of X as a HIT:

pt:
$$X$$
 $a, b : pt = pt$ $r : a^5 = b^3$ $s : b^3 = (ab)^2$

▶ We study the suspension ΣX as a HIT and simplify:



► The crux is that higher homotopy groups are abelian by the Eckmann-Hilton (EH) argument.

$$N: \Sigma X$$
 $m_a, m_b: \operatorname{refl}_N = \operatorname{refl}_N$
 $m_r: m_a^5 = m_b^3$
 $m_s: m_b^3 = (m_a m_b)^2$

► The crux is that higher homotopy groups are abelian by the Eckmann–Hilton (EH) argument.

$$N: \Sigma X$$

$$m_a, m_b : \operatorname{refl}_N = \operatorname{refl}_N$$

$$m_r : m_a^5 = m_b^3$$

$$m_s : m_b^3 = (m_a m_b)^2$$

$$M: \Sigma X$$

$$m_a, m_b : \operatorname{refl}_N = \operatorname{refl}_N$$

$$m_r : m_a^5 = m_b^3$$

$$m_s : m_b = m_a^2$$

► The crux is that higher homotopy groups are abelian by the Eckmann-Hilton (EH) argument.

$$N: \Sigma X$$

$$m_a, m_b : \operatorname{refl}_N = \operatorname{refl}_N$$

$$m_r : m_a^5 = m_b^3$$

$$m_s : m_b^3 = (m_a m_b)^2$$

$$M: \Sigma X$$

$$m_a, m_b : \operatorname{refl}_N = \operatorname{refl}_N$$

$$m_r : m_a^5 = m_b^3$$

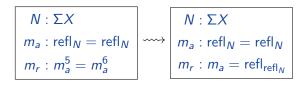
$$m_s : m_b = m_a^2$$

► And we can contract again:

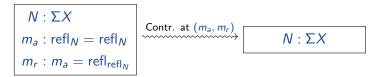
$$\begin{array}{c}
N: \Sigma X \\
m_a, m_b : \operatorname{refl}_N = \operatorname{refl}_N \\
m_r : m_a^5 = m_b^3 \\
m_s : m_b = m_a^2
\end{array}$$

$$\begin{array}{c}
\text{Contr. at } (m_b, m_s) \\
m_a : \operatorname{refl}_N = \operatorname{refl}_N \\
m_r : m_a^5 = m_a^6$$

► We can simplify



and finally, contract once again:



Thus, the suspension ΣX of X is equivalent to a single point and X is acyclic.

The Higman group: an acyclic classifying type

► The Higman group is defined as the group with 4 generators a, b, c, d and 4 relations

$$r_a: a=[d,a]$$
 $r_b: b=[a,b]$ $r_c: c=[b,c]$ $r_d: d=[c,d],$ where $[x,y]\equiv xyx^{-1}y^{-1}$ denotes the commutator.

▶ In HoTT we can describe its classifying type BH as a HIT:

pt : BH

$$a, b, c, d$$
 : pt = pt
 $r_a : a = [d, a]$
 $r_b : a = [a, b]$
 $r_c : a = [b, c]$
 $r_d : a = [c, d]$

Acyclicity and nontriviality of the Higman HIT

- ► The commutators become trivial in the suspension by Eckmann-Hilton, so as with Hatcher's example, the type BH is seen to be acyclic.
- Why is BH a nontrivial type?
 For n ≤ 3 generators and relations, the resulting group turns out to be trivial!
- Classical proofs of the nontriviality of Higman's group rely on combinatorial group theory and show that all generators a, b, c, d have infinite order in H.

Nontriviality of the Higman group via descent and pushouts

- We can completely avoid classical combinatorial group theory using descent and David Wärn's recent results on identity types of pushouts.
- ► Thm. (Wärn) Given a pushout square

$$\begin{array}{ccc}
R & \xrightarrow{g} & B \\
f \downarrow & & \downarrow & \text{inr} \\
A & \xrightarrow{\text{inl}} & A +_{R} & B
\end{array}$$

with f and g 0-truncated maps of 1-types, the pushout $A +_B B$ is again a 1-type and inl and inr are 0-truncated.

- ▶ We can (re)construct BH as a series of such pushout squares.
- ▶ It also follows that BH is a 1-type: no need to truncate!

Summary

At higher types, the notion of epimorphism

- becomes quite strong,
- coincides with the notion of an acyclic map, and
- ▶ is interesting from the p.o.v. of synthetic homotopy theory.

Additional and future work

- Do the acyclic maps form an accessible modality?
- Many properties seem to need an additional axiom:

Plus Principle: Every acyclic and simply connected type is contractible.

It follows from Whitehead's Principle (WP) and was highlighted by Hoyois in ∞ -topos theory.

- ▶ We believe that plus-constructions can be performed in HoTT assuming WP, Sets Cover, and Countable Choice.
- Use the theory of binate groups to prove acyclicity of some infinitely presented groups?
- ▶ We also study k-epimorphisms and k-acyclic types. (Similar to k-equivalences and k-connected maps.)

References

- Michael Barratt and Stewart Priddy. 'On the homology of non-connected monoids and their associated groups'. In: Comment. Math. Helv. 47 (1972), pp. 1–14. DOI: 10.1007/BF02566785.
- [2] Marc Bezem, Thierry Coquand, Peter Dybjer and Martín Escardó. 'Free groups in HoTT/UF in Agda'. https://www.cs.bham.ac.uk/-mhe/TypeTopology/FreeGroup.html. 2021.
- [3] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002. URL: https://pi.math.cornell.edu/~hatcher/AT/ATpage.html.
- [4] Marc Hoyois. 'On Quillen's plus construction'. 2019. URL: https://hoyois.app.uni-regensburg.de/papers/acyclic.pdf.
- [5] D. M. Kan and W. P. Thurston. 'Every connected space has the homology of a $K(\pi, 1)$ '. In: *Topology* 15.3 (1976), pp. 253–258. DOI: 10.1016/0040-9383(76)90040-9.
- [6] Ray Mines, Fred Richman and Wim Ruitenburg. A Course in Constructive Algebra. Universitext. Springer, 1988. DOI: 10.1007/978-1-4419-8640-5.
- [7] David Wärn. Path spaces of pushouts. Preprint. 2023. URL: https://dwarn.se/po-paths.pdf.