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Ordinals in set theory

▶ Def. A set x is transitive if for every y ∈ x and z ∈ y , we
have z ∈ x .

▶ Def. A set-theoretic ordinal is a transitive set whose elements
are all transitive.

▶ Lemma The elements of a set-theoretic ordinal are again
set-theoretic ordinals.
Thus, a set is a set-theoretic ordinal if and only if it is
hereditarily transitive.

▶ Ex. The sets ∅, {∅} and {∅, {∅}} are all set-theoretic ordinals,
but {∅, {∅}, {{∅}}} isn’t, as {{∅}} is a non-transitive member.
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Ordinals in homotopy type theory

▶ In HoTT, a (type-theoretic) ordinal is defined as a type X
with a prop-valued binary relation < that is transitive,
extensional and wellfounded.

▶ Extensionality means that we have

x = y ⇐⇒ ∀(u : X ).(u < x ⇐⇒ u < y)

It follows that X is an hset.

▶ Wellfoundedness is defined in terms of accessibility, but is
equivalent to the assertion that for every P : X → U , we have
Π(x : X ).P(x) as soon as
Π(x : X ).(Π(y : X ).(y < x → P(y))) → P(x).
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Types of ordinals in HoTT
▶ We write Ord for the type of (small) type-theoretic ordinals.

▶ HoTT hosts a model (V, ∈) of a constructive set theory.
The type V is a HIT with point-constructor

V-set(A, f ) : V for A : U and f : A → V

quotiented by bisimilarity: V-set(A, f ) and V-set(B, g) are
identified exactly when f and g have the same image.

▶ We define set-membership ∈ : V → V → Prop by

x ∈ V-set(A, f ) :≡ ∃(a : A).f (a) = x

▶ Thus, we can define the subtype Vord of V of set-theoretic
ordinals in HoTT.
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Set-theoretic and type-theoretic ordinals are equivalent
▶ Thm. The types Vord and Ord are equivalent.

▶ Proof sketch Define Φ : Ord → Vord by transfinite recursion:

Φ(α) :≡ V-set(α, λ(a : α).Φ(α ↓ a)),

where
α ↓ a :≡ Σ(b : α).b < a.

Its inverse Ψ : Vord → Ord is the rank function:

Ψ(V-set(A, f )) :≡
∨
a:A

(Ψ(f (a)) + 1).

▶ It is possible to give nonrecursive descriptions of the rank:

Ψ(x) ≃ Σ(y : Vord).y ∈ x and Ψ(V-set(A, f )) = A/∼,

where a ∼ b ⇐⇒ f (a) = f (b). (But be careful about size.)
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The big picture

▶ Thm. The types Vord and Ord are equivalent.
But more is true...

▶ The type Ord is actually a large type-theoretic ordinal itself:

α ≺ β ⇐⇒ α is an initial segment of β

⇐⇒ Σ(y : β).(α = β ↓ y)

▶ Membership ∈ makes Vord into a large type-theoretic ordinal.

▶ Thm. The type-theoretic ordinals (Vord, ∈) and (Ord, ≺) are
isomorphic.
Thus, in HoTT,

set-theoretic and type-theoretic ordinals coincide.
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The bigger picture

▶ Can we realize the full cumulative hierarchy V as a type of
ordered structures?
That is, can we find a type making the square

Vord Ord

V ?

≃

≃

commute?

▶ An initial naive attempt may be to simply drop transitivity,
i.e., to take

? = type of extensional wellfounded orders.
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Generalizing from ordinals to sets

▶ We consider extensional wellfounded orders (X , <) with a
marking: a predicate on X that picks out the top-level
elements of a set.

▶ E.g., the sets {∅, {∅}} and {{∅}} are both represented by the
two-element type ordered as 0 < 1; we mark both 0 and 1 for
the first set, but only 1 in the representation of the second set.

▶ A marking is covering if any element can be reached from a
marked top-level element, i.e., if the order contains no “junk”.

▶ The idea of encoding sets as wellfounded structures isn’t new.
The above approach worked well for our purposes of
generalizing the theory of ordinals.
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Filling the bigger picture

▶ We write MEWOcov for the type of covered marked
extensional wellfounded orders.

▶ Every ordinal can be equipped with the trivial covering by
marking everything. Thus, the type Ord of ordinals is a
subtype of MEWOcov.

▶ We get the bottom isomorphism by generalizing the
constructions used to establish Vord ≃ Ord:

Vord Ord

V MEWOcov

≃

≃
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Conclusion

▶ In HoTT, the set-theoretic ordinals in V coincide with the
type-theoretic ordinals.

▶ By generalizing from type-theoretic ordinals to covered
mewos, we capture all sets in V.

▶ Question: Do the type-theoretic ordinals in the cubical sets
model of HoTT coincide with the set-theoretic ordinals?

▶ Question: Can we use covered mewos to pin down the exact
constructive set theory that V models? E.g., can we show
strong collection is independent?

▶ Set-Theoretic and Type-Theoretic Ordinals Coincide. TdJ,
Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu.
arXiv:2301.10696. Accepted for presentation at LICS’23.
Fully formalized in Agda.
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