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Background and contribution

Ordinals are important in mathematical logic and computer science.
E.g., in the semantics of inductive data types, the justification of recursion
and termination, the proof-theoretic strength of a formal system, etc.

Contributions
1 Working in homotopy type theory (HoTT), we show that set-theoretic

and type-theoretic approaches to ordinals coincide.

2 We extend and generalize the above correspondence to all sets by
considering certain extensional wellfounded relations.
This gives a new perspective on Aczel’s [1978] type-theoretic
interpretation of set theory.
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Ordinals in set theory

There are many classically equivalent notions of ordinals in set theory; the
following is constructively acceptable [Powell 1975, Aczel–Rathjen 2010]:

Def. A set x is transitive if z ∈ y and y ∈ x implies z ∈ x .

Def. A set-theoretic ordinal is a transitive set whose elements are all
transitive.

Examples 0 := ∅, 1 := {∅}, 2 := {∅, {∅}}, . . . , N := {0, 1, 2, . . .}, . . . are
all set-theoretic ordinals.
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Ordinals in HoTT

In type theory, the statement “z : y and y : x implies z : x” makes no
sense. The HoTT Book [§10.3] instead defines ordinals as follows:

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary
relation < that is transitive, extensional and wellfounded.

Example (N, <) is a type-theoretic ordinal.

4/10



Ordinals in HoTT

In type theory, the statement “z : y and y : x implies z : x” makes no
sense. The HoTT Book [§10.3] instead defines ordinals as follows:

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary
relation < that is transitive, extensional and wellfounded.

Example (N, <) is a type-theoretic ordinal.

Extensionality means that we have

x = y ⇐⇒ ∀(u : X ).(u < x ⇐⇒ u < y).

4/10



Ordinals in HoTT

In type theory, the statement “z : y and y : x implies z : x” makes no
sense. The HoTT Book [§10.3] instead defines ordinals as follows:

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary
relation < that is transitive, extensional and wellfounded.

Example (N, <) is a type-theoretic ordinal.

Extensionality means that we have

x = y ⇐⇒ ∀(u : X ).(u < x ⇐⇒ u < y).

Wellfoundedness is defined in terms of accessibility, but is equivalent to
transfinite induction: for every P : X → U , we have ∀(x : X ).P(x) as soon
as ∀(x : X ).(∀(y : X ).(y < x → P(y))) → P(x).
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Ordinals in HoTT

In type theory, the statement “z : y and y : x implies z : x” makes no
sense. The HoTT Book [§10.3] instead defines ordinals as follows:

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary
relation < that is transitive, extensional and wellfounded.

Example (N, <) is a type-theoretic ordinal.

Def. We write Ord for the type of type-theoretic ordinals.

Ord :≡ Σ(X : U).Σ(< : X → X → Prop).“< is transitive, ext. and wf.”
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The cumulative hierarchy in HoTT

We construct a type V of material sets, known as the cumulative
hierarchy [HoTT Book §10.5].

The type V is a quotient inductive type with constructor

V-set :
(
Σ(A : U).(A → V)

)
→ V

quotiented by bisimilarity: V-set(A, f ) and V-set(B, g) are identified
exactly when f and g have the same image.

For example, the empty set is represented by V-set(0, 0-rec), and if x : V,
then the singleton {x} is represented by V-set(1, λ(u : 1).x).

This is a refinement of Aczel’s [1978] model of CZF in type theory (see
also [Gylterud 2018]).
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Set-theoretic ordinals in HoTT

Def. We define set membership ∈ : V → V → Prop by

x ∈ V-set(A, f ) :≡ ∃(a : A).f (a) = x .

Using ∈, we define the subtype Vord of V of set-theoretic ordinals in HoTT:

Vord :≡ Σ(x : V).“x is a transitive set of transitive sets”.
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Set-theoretic and type-theoretic ordinals coincide

Note:
set membership ∈ is a wellorder on Vord,
using initial segments, we can define a wellorder ≺ on Ord,

so we have type-theoretic ordinals (Vord, ∈) and (Ord, ≺).

Thm. The type-theoretic ordinals (Vord, ∈) and (Ord, ≺) are isomorphic
and by univalence they are equal.

In HoTT,
set-theoretic and type-theoretic ordinals coincide.
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Completing the square: from ordinals to sets

type of hereditarily
transitive sets (Vord, ∈) (Ord, ≺) type of transitive

ext. wf. relations

type of sets (V, ∈) ?

≃

≃
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Completing the square: from ordinals to sets

type of hereditarily
transitive sets (Vord, ∈) (Ord, ≺) type of transitive

ext. wf. relations

type of sets (V, ∈) ? type of covered marked
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Covered marked ext. wf. relations by example

We equip extensional wellfounded relations with a marking which picks out
“top-level” elements.

For example, the set {∅, {∅}} is represented by

0 < 1,

while the set {{∅}} is represented by

0 < 1.

A marking is covering if every element can be reached from a marked
element, i.e., if the relation contains no “junk”.

9/10



Covered marked ext. wf. relations by example

We equip extensional wellfounded relations with a marking which picks out
“top-level” elements.

For example, the set {∅, {∅}} is represented by

0 < 1,

while the set {{∅}} is represented by

0 < 1.

A marking is covering if every element can be reached from a marked
element, i.e., if the relation contains no “junk”.

9/10



Covered marked ext. wf. relations by example

We equip extensional wellfounded relations with a marking which picks out
“top-level” elements.

For example, the set {∅, {∅}} is represented by

0 < 1,

while the set {{∅}} is represented by

0 < 1.

A marking is covering if every element can be reached from a marked
element, i.e., if the relation contains no “junk”.

9/10



Summary

In HoTT, the set-theoretic ordinals in V coincide with the type-theoretic
ordinals.

By generalizing from type-theoretic ordinals to covered marked ext. wf.
relations, we capture all sets in V.

Question: Can we similarly capture non-wellfounded sets as certain graphs
in HoTT?

Full Agda formalisation.
Building on Escardó’s TypeTopology, and the agda/cubical library.
https://tdejong.com/agda-html/st-tt-ordinals/
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