Set-Theoretic and Type-Theoretic Ordinals Coincide

Tom de Jong ${ }^{1} \quad$ Nicolai Kraus ${ }^{1}$
Fredrik Nordvall Forsberg ${ }^{2}$ Chuangjie Xu^{3}

${ }^{1}$ University of Nottingham, UK
${ }^{2}$ University of Strathclyde, UK
${ }^{3}$ SonarSource GmbH, Germany

Thirty-Eighth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS)
29 June 2023

Background and contribution

Ordinals are important in mathematical logic and computer science. E.g., in the semantics of inductive data types, the justification of recursion and termination, the proof-theoretic strength of a formal system, etc.

Background and contribution

Ordinals are important in mathematical logic and computer science. E.g., in the semantics of inductive data types, the justification of recursion and termination, the proof-theoretic strength of a formal system, etc.

Contributions

(1) Working in homotopy type theory (HoTT), we show that set-theoretic and type-theoretic approaches to ordinals coincide.

Background and contribution

Ordinals are important in mathematical logic and computer science. E.g., in the semantics of inductive data types, the justification of recursion and termination, the proof-theoretic strength of a formal system, etc.

Contributions

(1) Working in homotopy type theory (HoTT), we show that set-theoretic and type-theoretic approaches to ordinals coincide.
(2) We extend and generalize the above correspondence to all sets by considering certain extensional wellfounded relations.
This gives a new perspective on Aczel's [1978] type-theoretic interpretation of set theory.

Ordinals in set theory

There are many classically equivalent notions of ordinals in set theory; the following is constructively acceptable [Powell 1975, Aczel-Rathjen 2010]:

Def. A set x is transitive if $z \in y$ and $y \in x$ implies $z \in x$.
Def. A set-theoretic ordinal is a transitive set whose elements are all transitive.

Examples $0:=\emptyset, 1:=\{\emptyset\}, 2:=\{\emptyset,\{\emptyset\}\}, \ldots, \mathbb{N}:=\{0,1,2, \ldots\}, \ldots$ are all set-theoretic ordinals.

Ordinals in HoTT

In type theory, the statement " $z: y$ and $y: x$ implies $z: x$ " makes no sense. The HoTT Book [§10.3] instead defines ordinals as follows:

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary relation $<$ that is transitive, extensional and wellfounded.

Example $(\mathbb{N},<)$ is a type-theoretic ordinal.

Ordinals in HoTT

In type theory, the statement " $z: y$ and $y: x$ implies $z: x$ " makes no sense. The HoTT Book [§10.3] instead defines ordinals as follows:

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary relation $<$ that is transitive, extensional and wellfounded.

Example $(\mathbb{N},<)$ is a type-theoretic ordinal.
Extensionality means that we have

$$
x=y \Longleftrightarrow \forall(u: X) \cdot(u<x \Longleftrightarrow u<y)
$$

Ordinals in HoTT

In type theory, the statement " $z: y$ and $y: x$ implies $z: x$ " makes no sense. The HoTT Book [§10.3] instead defines ordinals as follows:

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary relation $<$ that is transitive, extensional and wellfounded.

Example $(\mathbb{N},<)$ is a type-theoretic ordinal.
Extensionality means that we have

$$
x=y \Longleftrightarrow \forall(u: X) \cdot(u<x \Longleftrightarrow u<y)
$$

Wellfoundedness is defined in terms of accessibility, but is equivalent to transfinite induction: for every $P: X \rightarrow \mathcal{U}$, we have $\forall(x: X) \cdot P(x)$ as soon as $\forall(x: X) .(\forall(y: X) .(y<x \rightarrow P(y))) \rightarrow P(x)$.

Ordinals in HoTT

In type theory, the statement " $z: y$ and $y: x$ implies $z: x$ " makes no sense. The HoTT Book [§10.3] instead defines ordinals as follows:

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary relation $<$ that is transitive, extensional and wellfounded.

Example $(\mathbb{N},<)$ is a type-theoretic ordinal.

Def. We write Ord for the type of type-theoretic ordinals.
Ord $: \equiv \Sigma(X: \mathcal{U}) \cdot \Sigma(<: X \rightarrow X \rightarrow$ Prop $) . "<$ is transitive, ext. and wf."

The cumulative hierarchy in HoTT

We construct a type \mathbb{V} of material sets, known as the cumulative hierarchy [HoTT Book §10.5].

The cumulative hierarchy in HoTT

We construct a type \mathbb{V} of material sets, known as the cumulative hierarchy [HoTT Book §10.5].

The type \mathbb{V} is a quotient inductive type with constructor

$$
\mathbb{V} \text {-set }:(\Sigma(A: \mathcal{U}) \cdot(A \rightarrow \mathbb{V})) \rightarrow \mathbb{V}
$$

The cumulative hierarchy in HoTT

We construct a type \mathbb{V} of material sets, known as the cumulative hierarchy [HoTT Book §10.5].

The type \mathbb{V} is a quotient inductive type with constructor

$$
\mathbb{V} \text {-set }:(\Sigma(A: \mathcal{U}) \cdot(A \rightarrow \mathbb{V})) \rightarrow \mathbb{V}
$$

For example, the empty set is represented by \mathbb{V}-set $(\mathbf{0}, \mathbf{0}$-rec), and if $x: \mathbb{V}$, then the singleton $\{x\}$ is represented by \mathbb{V}-set $(\mathbf{1}, \lambda(u: \mathbf{1}) . x)$.

The cumulative hierarchy in HoTT

We construct a type \mathbb{V} of material sets, known as the cumulative hierarchy [HoTT Book §10.5].

The type \mathbb{V} is a quotient inductive type with constructor

$$
\mathbb{V} \text {-set }:(\Sigma(A: \mathcal{U}) \cdot(A \rightarrow \mathbb{V})) \rightarrow \mathbb{V}
$$

quotiented by bisimilarity: \mathbb{V}-set (A, f) and \mathbb{V}-set (B, g) are identified exactly when f and g have the same image.

For example, the empty set is represented by \mathbb{V}-set $(\mathbf{0}, \mathbf{0}$-rec), and if $x: \mathbb{V}$, then the singleton $\{x\}$ is represented by \mathbb{V}-set $(\mathbf{1}, \lambda(u: \mathbf{1}) \cdot x)$.

The cumulative hierarchy in HoTT

We construct a type \mathbb{V} of material sets, known as the cumulative hierarchy [HoTT Book §10.5].

The type \mathbb{V} is a quotient inductive type with constructor

$$
\mathbb{V} \text {-set }:(\Sigma(A: \mathcal{U}) \cdot(A \rightarrow \mathbb{V})) \rightarrow \mathbb{V}
$$

quotiented by bisimilarity: \mathbb{V}-set (A, f) and \mathbb{V}-set (B, g) are identified exactly when f and g have the same image.

For example, the empty set is represented by \mathbb{V}-set $(\mathbf{0}, \mathbf{0}$-rec), and if $x: \mathbb{V}$, then the singleton $\{x\}$ is represented by \mathbb{V}-set $(\mathbf{1}, \lambda(u: \mathbf{1}) . x)$.

This is a refinement of Aczel's [1978] model of CZF in type theory (see also [Gylterud 2018]).

Set-theoretic ordinals in HoTT

Def. We define set membership $\in: \mathbb{V} \rightarrow \mathbb{V} \rightarrow$ Prop by

$$
x \in \mathbb{V}-\operatorname{set}(A, f): \equiv \exists(a: A) \cdot f(a)=x
$$

Set-theoretic ordinals in HoTT

Def. We define set membership $\in: \mathbb{V} \rightarrow \mathbb{V} \rightarrow$ Prop by

$$
x \in \mathbb{V}-\operatorname{set}(A, f): \equiv \exists(a: A) \cdot f(a)=x
$$

Using \in, we define the subtype $\mathbb{V}_{\text {ord }}$ of \mathbb{V} of set-theoretic ordinals in HoTT:

$$
\mathbb{V}_{\text {ord }}: \equiv \Sigma(x: \mathbb{V}) . " x \text { is a transitive set of transitive sets". }
$$

Set-theoretic and type-theoretic ordinals coincide

Note:

- set membership \in is a wellorder on $\mathbb{V}_{\text {ord }}$,
- using initial segments, we can define a wellorder \prec on Ord, so we have type-theoretic ordinals $\left(\mathbb{V}_{\text {ord }}, \in\right)$ and (Ord, $\left.\prec\right)$.

Set-theoretic and type-theoretic ordinals coincide

Note:

- set membership \in is a wellorder on $\mathbb{V}_{\text {ord }}$,
- using initial segments, we can define a wellorder \prec on Ord, so we have type-theoretic ordinals $\left(\mathbb{V}_{\text {ord }}, \in\right)$ and (Ord, $\left.\prec\right)$.

Thm. The type-theoretic ordinals $\left(\mathbb{V}_{\text {ord }}, \in\right)$ and (Ord, $\left.\prec\right)$ are isomorphic and by univalence they are equal.

Set-theoretic and type-theoretic ordinals coincide

Note:

- set membership \in is a wellorder on $\mathbb{V}_{\text {ord }}$,
- using initial segments, we can define a wellorder \prec on Ord, so we have type-theoretic ordinals $\left(\mathbb{V}_{\text {ord }}, \in\right)$ and (Ord, $\left.\prec\right)$.

Thm. The type-theoretic ordinals $\left(\mathbb{V}_{\text {ord }}, \in\right)$ and (Ord, $\left.\prec\right)$ are isomorphic and by univalence they are equal.

In HoTT,
set-theoretic and type-theoretic ordinals coincide.

Completing the square: from ordinals to sets

Covered marked ext. wf. relations by example

We equip extensional wellfounded relations with a marking which picks out "top-level" elements.

Covered marked ext. wf. relations by example

We equip extensional wellfounded relations with a marking which picks out "top-level" elements.

For example, the set $\{\emptyset,\{\emptyset\}\}$ is represented by

$$
\underline{0}<\underline{1},
$$

while the set $\{\{\emptyset\}\}$ is represented by

$$
0<\underline{1} .
$$

Covered marked ext. wf. relations by example

We equip extensional wellfounded relations with a marking which picks out "top-level" elements.

For example, the set $\{\emptyset,\{\emptyset\}\}$ is represented by

$$
\underline{0}<\underline{1},
$$

while the set $\{\{\emptyset\}\}$ is represented by

$$
0<\underline{1} .
$$

A marking is covering if every element can be reached from a marked element, i.e., if the relation contains no "junk".

Summary

In HoTT, the set-theoretic ordinals in \mathbb{V} coincide with the type-theoretic ordinals.

By generalizing from type-theoretic ordinals to covered marked ext. wf. relations, we capture all sets in \mathbb{V}.

Question: Can we similarly capture non-wellfounded sets as certain graphs in HoTT?

Us) Full Agda formalisation.
Building on Escardó's TypeTopology, and the agda/cubical library. https://tdejong.com/agda-html/st-tt-ordinals/

References

Peter Aczel. 'The type theoretic interpretation of constructive set theory'. In: Logic Colloquium '77. Ed. by A. Maclntyre, L. Pacholski and J. Paris. Vol. 96. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1978, pp. 55-66. DOI: 10.1016/S0049-237X (08)71989-X.
Peter Aczel and Michael Rathjen. 'Notes on Constructive Set Theory'. Book draft, available at:
https://www1.maths.leeds.ac.uk/~rathjen/book.pdf. 2010.
Martín Hötzel Escardó et al. 'Ordinals in univalent type theory in Agda notation'. Agda development, HTML rendering available at: https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.index.html. 2018.
Håkon Robbestad Gylterud. 'From Multisets to Sets in Homotopy Type Theory'. In: The Journal of Symbolic Logic 83.3 (2018), pp. 1132-1146. DOI: $10.1017 /$ jsl.2017. 84.

William C. Powell. 'Extending Gödel's negative interpretation to ZF'. In: The Journal of Symbolic Logic 40.2 (1975), pp. 221-229. DOI: 10.1017/jsl.2017.84.
The agda/cubical development team. The agda/cubical library. Available at: https://github.com/agda/cubical/. 2018-.

Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.

