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Starting question

P Exercise in category theory:
The epimorphisms of sets are precisely the surjections.

» Question:
What are the epimorphisms of types?

» \We answer this question in homotopy type theory (HoTT),
where we have higher types.



Motivation for studying epimorphisms

» Epimorphisms are useful because
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» Epimorphisms are useful because
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» We show that epis of types are closely related to acyclic types.

Classically, acyclic spaces are used in algebraic topology in

» Quillen’s plus construction,
» the Kan—-Thurston theorem, and
» the Barratt—Priddy(—Quillen) theorem.

So this leads to interesting synthetic homotopy theory!
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Homotopy type theory (HoTT)

» In HoTT, we think of types as spaces.

» If we have a type A with points a, b : A, then we may have
identifications p, g : a =4 b and higher identifications

a,B:p =a=yp g, €tc.

> A type is a set or O-type if there are no higher identifications.

Eg N, N—2 N — N, etc. are all 0-types.
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Higher types

» The circle St

Higher inductive type

base : St

loop : base = base

base

loop

is a 1-type: its identity types are O-types. In fact,

(base = base) ~ Z.

6

18



Higher types

» The circle St

loop

Higher inductive type

base : St boce

loop : base = base

is a 1-type: its identity types are O-types. In fact,

(base = base) ~ Z.

» Similarly, we get the notion of a k-type for k > 0.
(Actually, k > —2.)
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Epimorphisms in HoTT

» In 1-category theory, a morphism f : A — B is an
epi(morphism) if for every object C and all morphisms
g,h: B — C, we have

(gof=hof)= (g=h).
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Epimorphisms in HoTT

» In 1-category theory, a morphism f : A — B is an
epi(morphism) if for every object C and all morphisms
g,h: B — C, we have

(gof=hof)= (g=h).
> We want the epis to be a subtype of the type of functions.

That is,
two epis should be equal iff they are equal as functions.

» Def. Amap f: A— Bis an epi if the canonical map
(g=h) —(gof=hof)

is an equivalence for all types C and all maps g, h: B — C.

Note: C may be a higher type!



A surjection that isn't an epi

» While the map  : 2 — 1 is surjective and an epi w.r.t sets, it
is not an epi w.r.t. all types.
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A surjection that isn't an epi

» While the map  : 2 — 1 is surjective and an epi w.r.t sets, it
is not an epi w.r.t. all types.

» For g: 1 — S! given by base, we have
(g = g) ~ (base = base) ~ Z,
while
(gof=gof) ~ (base = base) x (base = base) ~ 72,
and the canonical map

7~ (g=g) — (gof=gof) ~ 7
k — (k, k)

is not an equivalence.
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Suspensions and acyclic types

» Def. The suspension XA of a type A is

Higher inductive type

N,S: A
merid : A — (N =15)

S

> Ex. The suspension of the circle is the sphere.
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Suspensions and acyclic types

» Def. The suspension XA of a type A is

Higher inductive type

N,S: A
merid : A — (N =15)

S

> Ex. The suspension of the circle is the sphere.
» Def. A type Ais acyclic if XA ~ 1.

» Ex. The unit type 1 is acyclic.
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Characterization of epimorphisms
» Fact Amap f: X — Y is epi w.r.t sets <= f is surjective.

» Surjectivity means: for every y : Y, the fiber of f is inhabited.
That is, we have an element of the propositional truncation of

fibe(y) = > f(x)=y.
x: X
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Characterization of epimorphisms
> Fact Amap f: X — Y is epi w.r.t sets < f is surjective.

» Surjectivity means: for every y : Y, the fiber of f is inhabited.
That is, we have an element of the propositional truncation of

fibs(y Z f(x

» Fact' Amap f: X — Y is epi w.r.t sets
<= all fibers of f are inhabited.

Theorem
A map f: X — Yisepi (w.r.t. all types) <= all fibers are acyclic.

That is, the suspension of fibs(y) is equivalent to 1 for all y : Y.
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Summarising the results presented so far

Epis (w.r.t all types) < > Epis w.r.t. sets

Maps with acyclic fibers ¢ ) Maps with inhabited fibers

(a.k.a surjections)

Examples
7 21
parity : N — 2



An example of an epimorphism

» The theorem implies:
A map X — 1lis an epi <= X is acyclic.

> We'll present an illustrative example of an acyclic type.
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An example of an epimorphism

» The theorem implies:

A map X — 1lis an epi <= X is acyclic.

> We'll present an illustrative example of an acyclic type.

> We note:
Thm. The only acyclic set is 1.

So we look at higher types for acyclicity.
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The Higman group, classically

» The Higman group H is defined as the group with 4
generators a, b, ¢, d and 4 relations

rora=|[d,al r:b=1J[a,b] rc:c=][b,c] ry:d=]cd,

where [x, y] = xyx 1y~ denotes the commutator.

» Classically, its classifying space is acyclic.

We build a space (CW-complex) with fundamental group H.
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The Higman group, classically
» The Higman group H is defined as the group with 4
generators a, b, ¢, d and 4 relations
rora=|[d,al r:b=1J[a,b] rc:c=][b,c] ry:d=]cd,
where [x, y] = xyx 1y~ denotes the commutator.

» Classically, its classifying space is acyclic.

We build a space (CW-complex) with fundamental group H.

» The group can be shown to be nontrivial, but it requires
combinatorial group theory.

For < 3 generators and relations the presentation yields the
trivial group!
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The Higman group, type-theoretically

> We present the Higman space BH as the following higher
inductive type:

pt: BH
a,b,c,d:pt=npt

ra:a=1|[d,a] r:a=|[ab] rc:a=[b,c] rq:a=]cd|
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The Higman group, type-theoretically

> We present the Higman space BH as the following higher
inductive type:

pt: BH
a,b,c,d:pt=npt

ra:a=1|[d,a] r:a=|[ab] rc:a=[b,c] rq:a=]cd|

» For acyclicity, the suspension >~ BH of BH is contractible by:

» a higher inductive presentation of X BH, and

» the Eckmann—Hilton argument: all higher homotopy groups
are commutative.
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Nontriviality of the Higman HIT

> We completely avoid classical combinatorial group theory in
proving that the Higman HIT is nontrivial.

CLASSICS IN MATHEMATICS

Roger C. Lyndon - Paul E. Schupp

Combinatorial
Group Theory
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Nontriviality of the Higman HIT

» We completely avoid classical combinatorial group theory in
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» Instead, we use tools from higher topos/type theory.
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Nontriviality of the Higman HIT

> We completely avoid classical combinatorial group theory in
proving that the Higman HIT is nontrivial.

» Instead, we use tools from higher topos/type theory.

» Descent: Interplay between pullbacks and pushouts.

If the bottom and top squares of a commutative cube are
pushouts and the back sides are pullbacks,

SN
12X X
NI%

then the front sides are pullbacks too.
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Nontriviality of the Higman HIT

» We completely avoid classical combinatorial group theory in
proving that the Higman HIT is nontrivial.

» Instead, we use tools from higher topos/type theory.

» Descent: Interplay between pullbacks and pushouts.

» Thm. (Warn) Given O-truncated maps of 1-types
A < R — B, the pushout A +r B is again a 1-type and the
inclusion maps are O-truncated.

» We can (re)construct BH as a series of such pushout squares.

» It also follows that BH is a 1-type: no need to truncate!



Summary

At higher types, the notion of epimorphism

P> becomes quite strong,
» coincides with the notion of an acyclic map, and

> is interesting from the p.o.v. of synthetic homotopy theory.
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Additional and future work

>

>

Do the acyclic maps form an accessible modality?

Many properties seem to need an additional axiom:

Plus Principle: Every acyclic and simply connected type
is contractible.

It follows from Whitehead's Principle (WP) and was
highlighted by Hoyois in co-topos theory.

We believe that plus-constructions can be performed in HoTT
assuming WP, Sets Cover, and Countable Choice.

Use the theory of binate groups to prove acyclicity of some
infinitely presented groups?

We also study k-epimorphisms and k-acyclic types.
(Similar to k-equivalences and k-connected maps.)
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