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Starting question

▶ Exercise in category theory:
The epimorphisms of sets are precisely the surjections.

▶ Question:
What are the epimorphisms of types?

▶ We answer this question in homotopy type theory (HoTT),
where we have higher types.
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Motivation for studying epimorphisms

▶ Epimorphisms are useful because

f is an epi ⇐⇒
A B

X

∀g

f

unique if
it exists

▶ We show that epis of types are closely related to acyclic types.

Classically, acyclic spaces are used in algebraic topology in
▶ Quillen’s plus construction,
▶ the Kan–Thurston theorem, and
▶ the Barratt–Priddy(–Quillen) theorem.

So this leads to interesting synthetic homotopy theory!
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Outline

1. Homotopy type theory (HoTT)

2. Epimorphisms in HoTT

3. A surjection that isn’t an epimorphism

4. Characterization of epimorphisms

5. Example of an epimorphism
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Homotopy type theory (HoTT)

▶ In HoTT, we think of types as spaces.

▶ If we have a type A with points a, b : A, then we may have
identifications p, q : a =A b and higher identifications
α, β : p =a=Ab q, etc.

▶ A type is a set or 0-type if there are no higher identifications.
E.g. N, N→ 2, N→ N, etc. are all 0-types.

5/18



Higher types

▶ The circle S1

Higher inductive type

base : S1

loop : base = base

is a 1-type: its identity types are 0-types. In fact,

(base = base) ≃ Z.

▶ Similarly, we get the notion of a k-type for k ≥ 0.
(Actually, k ≥ −2.)
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Epimorphisms in HoTT
▶ In 1-category theory, a morphism f : A→ B is an

epi(morphism) if for every object C and all morphisms
g , h : B → C , we have

(g ◦ f = h ◦ f ) =⇒ (g = h).

▶ We want the epis to be a subtype of the type of functions.
That is,

two epis should be equal iff they are equal as functions.

▶ Def. A map f : A→ B is an epi if the canonical map

(g = h) −→ (g ◦ f = h ◦ f )

is an equivalence for all types C and all maps g , h : B → C .
Note: C may be a higher type!
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A surjection that isn’t an epi
▶ While the map f : 2→ 1 is surjective and an epi w.r.t sets, it

is not an epi w.r.t. all types.

▶ For g : 1→ S1 given by base, we have

(g = g) ≃ (base = base) ≃ Z,

while

(g ◦ f = g ◦ f ) ≃ (base = base)× (base = base) ≃ Z2,

and the canonical map

Z ≃ (g = g) −→ (g ◦ f = g ◦ f ) ≃ Z2

k 7−→ (k, k)

is not an equivalence.
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Outline

✓ Homotopy type theory (HoTT)

✓ Epimorphisms in HoTT

✓ A surjection that isn’t an epimorphism

⋆ Characterization of epimorphisms

- Example of an epimorphism
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Suspensions and acyclic types

▶ Def. The suspension ΣA of a type A is

Higher inductive type

N, S : ΣA
merid : A→ (N = S)

a b

N

S

▶ Ex. The suspension of the circle is the sphere.

▶ Def. A type A is acyclic if ΣA ≃ 1.

▶ Ex. The unit type 1 is acyclic.
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Characterization of epimorphisms
▶ Fact A map f : X → Y is epi w.r.t sets ⇐⇒ f is surjective.

▶ Surjectivity means: for every y : Y , the fiber of f is inhabited.
That is, we have an element of the propositional truncation of

fibf (y) :=
∑
x :X

f (x) = y .

▶ Fact’ A map f : X → Y is epi w.r.t sets
⇐⇒ all fibers of f are inhabited.

Theorem
A map f : X → Y is epi (w.r.t. all types) ⇐⇒ all fibers are acyclic.
That is, the suspension of fibf (y) is equivalent to 1 for all y : Y .

a b

N

S
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Summarising the results presented so far

Epis (w.r.t all types) Epis w.r.t. sets

Maps with acyclic fibers Maps with inhabited fibers
(a.k.a surjections)

Examples
? 2→ 1

parity : N→ 2
...
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An example of an epimorphism

▶ The theorem implies:
A map X → 1 is an epi ⇐⇒ X is acyclic.

▶ We’ll present an illustrative example of an acyclic type.

▶ We note:

Thm. The only acyclic set is 1.

So we look at higher types for acyclicity.
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The Higman group, classically

▶ The Higman group H is defined as the group with 4
generators a, b, c, d and 4 relations

ra : a = [d , a] rb : b = [a, b] rc : c = [b, c] rd : d = [c, d ],

where [x , y ] ≡ xyx−1y−1 denotes the commutator.

▶ Classically, its classifying space is acyclic.
We build a space (CW-complex) with fundamental group H.

▶ The group can be shown to be nontrivial, but it requires
combinatorial group theory.
For ≤ 3 generators and relations the presentation yields the
trivial group!
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The Higman group, type-theoretically

▶ We present the Higman space BH as the following higher
inductive type:

pt : BH
a, b, c, d : pt = pt

ra : a = [d , a] rb : a = [a, b] rc : a = [b, c] rd : a = [c, d ]

▶ For acyclicity, the suspension Σ BH of BH is contractible by:

▶ a higher inductive presentation of Σ BH, and

▶ the Eckmann–Hilton argument: all higher homotopy groups
are commutative.
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Nontriviality of the Higman HIT
▶ We completely avoid classical combinatorial group theory in

proving that the Higman HIT is nontrivial.

▶ Instead, we use tools from higher topos/type theory.
▶ Descent: Interplay between pullbacks and pushouts.

▶ Thm. (Wärn) Given 0-truncated maps of 1-types
A← R → B, the pushout A +R B is again a 1-type and the
inclusion maps are 0-truncated.

▶ We can (re)construct BH as a series of such pushout squares.

▶ It also follows that BH is a 1-type: no need to truncate!
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Summary

At higher types, the notion of epimorphism

▶ becomes quite strong,

▶ coincides with the notion of an acyclic map, and

▶ is interesting from the p.o.v. of synthetic homotopy theory.
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Additional and future work
▶ Do the acyclic maps form an accessible modality?

▶ Many properties seem to need an additional axiom:
Plus Principle: Every acyclic and simply connected type

is contractible.
It follows from Whitehead’s Principle (WP) and was
highlighted by Hoyois in ∞-topos theory.

▶ We believe that plus-constructions can be performed in HoTT
assuming WP, Sets Cover, and Countable Choice.

▶ Use the theory of binate groups to prove acyclicity of some
infinitely presented groups?

▶ We also study k-epimorphisms and k-acyclic types.
(Similar to k-equivalences and k-connected maps.)
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