On epimorphisms and acyclic types in univalent type theory

Ulrik Buchholtz¹ Tom de Jong¹ Egbert Rijke²

¹University of Nottingham, UK ²University of Ljubljana, Slovenia

TYPES 2023 29th International Conference on Types for Proofs and Programs

ETSInf, Universitat Politècnica de València, Spain

12 June 2023

Starting question

Exercise in category theory: The epimorphisms of sets are precisely the surjections.

Question: What are the epimorphisms of types?

We answer this question in homotopy type theory (HoTT), where we have higher types.

Motivation for studying epimorphisms

Epimorphisms are useful because

Motivation for studying epimorphisms

Epimorphisms are useful because

We show that epis of types are closely related to acyclic types.

Classically, acyclic spaces are used in algebraic topology in

- Quillen's plus construction,
- the Kan–Thurston theorem, and
- the Barratt-Priddy(-Quillen) theorem.

So this leads to interesting synthetic homotopy theory!

Outline

- 1. Homotopy type theory (HoTT)
- 2. Epimorphisms in HoTT
- 3. A surjection that isn't an epimorphism
- 4. Characterization of epimorphisms
- 5. Example of an epimorphism

Homotopy type theory (HoTT)

► In HoTT, we think of types as spaces.

If we have a type A with points a, b : A, then we may have identifications p, q : a =_A b and higher identifications α, β : p =_{a=A}b q, etc.

A type is a set or 0-type if there are no higher identifications. E.g. N, N → 2, N → N, etc. are all 0-types.

Higher types

• The circle \mathbb{S}^1

Higher inductive type base : \mathbb{S}^1 loop : base = base

is a 1-type: its identity types are 0-types. In fact,

 $(base = base) \simeq \mathbb{Z}.$

Higher types

```
• The circle \mathbb{S}^1
```

```
Higher inductive type
base : \mathbb{S}^1
loop : base = base
```


is a 1-type: its identity types are 0-types. In fact,

 $(base = base) \simeq \mathbb{Z}.$

Similarly, we get the notion of a k-type for k ≥ 0. (Actually, k ≥ -2.)

In 1-category theory, a morphism f : A → B is an epi(morphism) if for every object C and all morphisms g, h : B → C, we have

$$(g \circ f = h \circ f) \Longrightarrow (g = h).$$

In 1-category theory, a morphism f : A → B is an epi(morphism) if for every object C and all morphisms g, h : B → C, we have

$$(g \circ f = h \circ f) \Longrightarrow (g = h).$$

We want the epis to be a subtype of the type of functions. That is, two epis should be equal iff they are equal as functions.

In 1-category theory, a morphism f : A → B is an epi(morphism) if for every object C and all morphisms g, h : B → C, we have

$$(g \circ f = h \circ f) \Longrightarrow (g = h).$$

- We want the epis to be a subtype of the type of functions. That is, two epis should be equal iff they are equal as functions.
- <u>Def</u>. A map $f : A \rightarrow B$ is an epi if the canonical map

$$(g = h) \longrightarrow (g \circ f = h \circ f)$$

is an *equivalence* for all types C and all maps $g, h : B \to C$.

In 1-category theory, a morphism f : A → B is an epi(morphism) if for every object C and all morphisms g, h : B → C, we have

$$(g \circ f = h \circ f) \Longrightarrow (g = h).$$

- We want the epis to be a subtype of the type of functions. That is, two epis should be equal iff they are equal as functions.
- <u>Def</u>. A map $f : A \rightarrow B$ is an epi if the canonical map

$$(g = h) \longrightarrow (g \circ f = h \circ f)$$

is an *equivalence* for all types C and all maps $g, h : B \to C$. Note: C may be a *higher* type!

While the map f : 2 → 1 is surjective and an epi w.r.t sets, it is not an epi w.r.t. all types.

While the map f : 2 → 1 is surjective and an epi w.r.t sets, it is not an epi w.r.t. all types.

▶ For $g: 1 \to S^1$ given by base, we have

 $(g = g) \simeq (base = base) \simeq \mathbb{Z},$

While the map f : 2 → 1 is surjective and an epi w.r.t sets, it is not an epi w.r.t. all types.

• For $g: \mathbf{1} \to \mathbb{S}^1$ given by base, we have

$$(g = g) \simeq (base = base) \simeq \mathbb{Z},$$

while

 $(g \circ f = g \circ f) \simeq (base = base) \times (base = base) \simeq \mathbb{Z}^2,$

While the map f : 2 → 1 is surjective and an epi w.r.t sets, it is not an epi w.r.t. all types.

• For $g: \mathbf{1} \to \mathbb{S}^1$ given by base, we have

$$(g = g) \simeq (base = base) \simeq \mathbb{Z},$$

while

 $(g \circ f = g \circ f) \simeq (base = base) \times (base = base) \simeq \mathbb{Z}^2,$

and the canonical map

$$\mathbb{Z} \simeq (g = g) \longrightarrow (g \circ f = g \circ f) \simeq \mathbb{Z}^2$$

 $k \longmapsto (k, k)$

is not an equivalence.

Outline

- ✓ Homotopy type theory (HoTT)
- ✓ Epimorphisms in HoTT
- $\checkmark\,$ A surjection that isn't an epimorphism
- \star Characterization of epimorphisms
- Example of an epimorphism

Suspensions and acyclic types

• Def. The suspension ΣA of a type A is

```
Higher inductive type
     \mathsf{N},\mathsf{S}:\Sigma A
   merid : A \rightarrow (N = S)
```


• Ex. The suspension of the circle is the sphere.

Suspensions and acyclic types

• <u>Def</u>. The suspension ΣA of a type A is

```
Higher inductive type

N, S : \Sigma A

merid : A \rightarrow (N = S)
```


- \underline{Ex} . The suspension of the circle is the sphere.
- <u>Def.</u> A type A is acyclic if $\Sigma A \simeq 1$.
- Ex. The unit type 1 is acyclic.

Characterization of epimorphisms

- Fact A map $f : X \to Y$ is epi w.r.t sets $\iff f$ is surjective.
- Surjectivity means: for every y : Y, the fiber of f is inhabited. That is, we have an element of the propositional truncation of

$$\operatorname{fib}_f(y) \coloneqq \sum_{x:X} f(x) = y.$$

Characterization of epimorphisms

- Fact A map $f : X \to Y$ is epi w.r.t sets $\iff f$ is surjective.
- Surjectivity means: for every y : Y, the fiber of f is inhabited. That is, we have an element of the propositional truncation of

$$\operatorname{fib}_f(y) := \sum_{x:X} f(x) = y.$$

▶ <u>Fact</u>' A map $f : X \to Y$ is epi w.r.t sets ⇔ all fibers of f are inhabited. Characterization of epimorphisms

- Fact A map $f: X \to Y$ is epi w.r.t sets $\iff f$ is surjective.
- Surjectivity means: for every y : Y, the fiber of f is inhabited. That is, we have an element of the propositional truncation of

$$\operatorname{fib}_f(y) \coloneqq \sum_{x:X} f(x) = y.$$

► <u>Fact</u>' A map $f : X \to Y$ is epi w.r.t sets \iff all fibers of f are inhabited.

Theorem

A map $f: X \to Y$ is epi (w.r.t. all types) \iff all fibers are acyclic.

That is, the suspension of $fib_f(y)$ is equivalent to 1 for all y : Y.

Summarising the results presented so far

Summarising the results presented so far

 $\begin{array}{c} \textbf{2} \rightarrow \textbf{1} \\ \text{parity} : \mathbb{N} \rightarrow \textbf{2} \end{array}$

Summarising the results presented so far

An example of an epimorphism

► The theorem implies:

A map $X \to \mathbf{1}$ is an epi $\iff X$ is acyclic.

► We'll present an illustrative example of an acyclic type.

An example of an epimorphism

► The theorem implies:

A map $X \to \mathbf{1}$ is an epi $\iff X$ is acyclic.

▶ We'll present an illustrative example of an acyclic type.

We note:

<u>Thm</u>. The only acyclic *set* is **1**.

So we look at higher types for acyclicity.

The Higman group, classically

The Higman group H is defined as the group with 4 generators a, b, c, d and 4 relations

 $r_a: a = [d, a]$ $r_b: b = [a, b]$ $r_c: c = [b, c]$ $r_d: d = [c, d],$

where $[x, y] \equiv xyx^{-1}y^{-1}$ denotes the commutator.

Classically, its classifying space is acyclic.
 We build a space (CW-complex) with fundamental group *H*.

The Higman group, classically

The Higman group H is defined as the group with 4 generators a, b, c, d and 4 relations

 $r_a: a = [d, a]$ $r_b: b = [a, b]$ $r_c: c = [b, c]$ $r_d: d = [c, d],$

where $[x, y] \equiv xyx^{-1}y^{-1}$ denotes the commutator.

- Classically, its classifying space is acyclic.
 We build a space (CW-complex) with fundamental group *H*.
- The group can be shown to be nontrivial, but it requires combinatorial group theory.

For \leq 3 generators and relations the presentation yields the trivial group!

The Higman group, type-theoretically

We present the Higman space BH as the following higher inductive type:

pt : BH a, b, c, d : pt = pt $r_a : a = [d, a]$ $r_b : a = [a, b]$ $r_c : a = [b, c]$ $r_d : a = [c, d]$ The Higman group, type-theoretically

We present the Higman space BH as the following higher inductive type:

pt : BH a, b, c, d : pt = pt $r_a : a = [d, a]$ $r_b : a = [a, b]$ $r_c : a = [b, c]$ $r_d : a = [c, d]$

For acyclicity, the suspension ΣBH of BH is contractible by:

- a higher inductive presentation of ΣBH , and
- the Eckmann–Hilton argument: all higher homotopy groups are commutative.

We completely avoid classical combinatorial group theory in proving that the Higman HIT is nontrivial.

- We completely avoid classical combinatorial group theory in proving that the Higman HIT is nontrivial.
- Instead, we use tools from higher topos/type theory.
 - Descent: Interplay between pullbacks and pushouts.

- We completely avoid classical combinatorial group theory in proving that the Higman HIT is nontrivial.
- Instead, we use tools from higher topos/type theory.
 - Descent: Interplay between pullbacks and pushouts.
 - If the bottom and top squares of a commutative cube are pushouts and the back sides are pullbacks,

then the front sides are pullbacks too.

- We completely avoid classical combinatorial group theory in proving that the Higman HIT is nontrivial.
- Instead, we use tools from higher topos/type theory.
 - Descent: Interplay between pullbacks and pushouts.
 - ► <u>Thm</u>. (Wärn) Given 0-truncated maps of 1-types A ← R → B, the pushout A +_R B is again a 1-type and the inclusion maps are 0-truncated.

- We completely avoid classical combinatorial group theory in proving that the Higman HIT is nontrivial.
- Instead, we use tools from higher topos/type theory.
 - Descent: Interplay between pullbacks and pushouts.
 - ► <u>Thm</u>. (Wärn) Given 0-truncated maps of 1-types A ← R → B, the pushout A +_R B is again a 1-type and the inclusion maps are 0-truncated.
- ▶ We can (re)construct BH as a series of such pushout squares.
- It also follows that BH is a 1-type: no need to truncate!

At higher types, the notion of epimorphism

- becomes quite strong,
- coincides with the notion of an acyclic map, and
- ▶ is interesting from the p.o.v. of synthetic homotopy theory.

Additional and future work

- Do the acyclic maps form an accessible modality?
- Many properties seem to need an additional axiom:
 Plus Principle: Every acyclic and simply connected type is contractible.

It follows from Whitehead's Principle (WP) and was highlighted by Hoyois in ∞ -topos theory.

- We believe that plus-constructions can be performed in HoTT assuming WP, Sets Cover, and Countable Choice.
- Use the theory of binate groups to prove acyclicity of some infinitely presented groups?
- We also study k-epimorphisms and k-acyclic types. (Similar to k-equivalences and k-connected maps.)

References

- Michael Barratt and Stewart Priddy. 'On the homology of non-connected monoids and their associated groups'. In: Comment. Math. Helv. 47 (1972), pp. 1–14. DOI: 10.1007/BF02566785.
- [2] Marc Hoyois. 'On Quillen's plus construction'. 2019. URL: https://hoyois.app.uni-regensburg.de/papers/acyclic.pdf.
- [3] D. M. Kan and W. P. Thurston. 'Every connected space has the homology of a K(π, 1)'. In: Topology 15.3 (1976), pp. 253–258. DOI: 10.1016/0040-9383(76)90040-9.
- [4] David Wärn. Path spaces of pushouts. Preprint. 2023. URL: https://dwarn.se/po-paths.pdf.