Library UniMath.MoreFoundations.WeakEquivalences
Definition transitive_paths_weq {X : UU} {x y z : X} :
x = y -> (x = z ≃ y = z).
Show proof.
x = y -> (x = z ≃ y = z).
Show proof.
intro xeqy.
use weq_iso.
- intro xeqz.
exact (!xeqy @ xeqz).
- intro yeqz.
exact (xeqy @ yeqz).
- intro xeqz.
refine (path_assoc _ _ _ @ _).
refine (maponpaths (λ p, p @ xeqz) (pathsinv0r xeqy) @ _).
reflexivity.
- intro yeqz.
refine (path_assoc _ _ _ @ _).
refine (maponpaths (λ p, p @ yeqz) (pathsinv0l xeqy) @ _).
reflexivity.
use weq_iso.
- intro xeqz.
exact (!xeqy @ xeqz).
- intro yeqz.
exact (xeqy @ yeqz).
- intro xeqz.
refine (path_assoc _ _ _ @ _).
refine (maponpaths (λ p, p @ xeqz) (pathsinv0r xeqy) @ _).
reflexivity.
- intro yeqz.
refine (path_assoc _ _ _ @ _).
refine (maponpaths (λ p, p @ yeqz) (pathsinv0l xeqy) @ _).
reflexivity.
TODO: can this be derived from weqtotal2comm12 or similar?
Definition weqtotal2comm {A B : UU} {C : A → B → UU} :
(∑ (a : A) (b : B), C a b) ≃ (∑ (b : B) (a : A), C a b).
Show proof.
(∑ (a : A) (b : B), C a b) ≃ (∑ (b : B) (a : A), C a b).
Show proof.
use weq_iso.
- exact (λ pair, pr1 (pr2 pair),, pr1 pair,, pr2 (pr2 pair)).
- exact (λ pair, pr1 (pr2 pair),, pr1 pair,, pr2 (pr2 pair)).
- reflexivity.
- reflexivity.
- exact (λ pair, pr1 (pr2 pair),, pr1 pair,, pr2 (pr2 pair)).
- exact (λ pair, pr1 (pr2 pair),, pr1 pair,, pr2 (pr2 pair)).
- reflexivity.
- reflexivity.
Direct products
Definition pathsdirprodweq {X Y : UU} {x1 x2 : X} {y1 y2 : Y} :
(dirprodpair x1 y1 = dirprodpair x2 y2) ≃ (x1 = x2) × (y1 = y2).
Show proof.
(dirprodpair x1 y1 = dirprodpair x2 y2) ≃ (x1 = x2) × (y1 = y2).
Show proof.
intermediate_weq (dirprodpair x1 y1 ╝ dirprodpair x2 y2).
- apply total2_paths_equiv.
- unfold PathPair; cbn.
use weqfibtototal; intro p; cbn.
apply transitive_paths_weq.
apply (toforallpaths _ _ _ (transportf_const p Y) y1).
- apply total2_paths_equiv.
- unfold PathPair; cbn.
use weqfibtototal; intro p; cbn.
apply transitive_paths_weq.
apply (toforallpaths _ _ _ (transportf_const p Y) y1).
Contractible types are neutral elements for ×, up to weak equivalence.
Lemma dirprod_with_contr_r : ∏ X Y : UU, iscontr X -> (Y ≃ Y × X).
Show proof.
Lemma dirprod_with_contr_l : ∏ X Y : UU, iscontr X -> (Y ≃ X × Y).
Show proof.
Show proof.
intros X Y iscontrX.
intermediate_weq (Y × unit); [apply weqtodirprodwithunit|].
- apply weqdirprodf.
* apply idweq.
* apply invweq, weqcontrtounit; assumption.
intermediate_weq (Y × unit); [apply weqtodirprodwithunit|].
- apply weqdirprodf.
* apply idweq.
* apply invweq, weqcontrtounit; assumption.
Lemma dirprod_with_contr_l : ∏ X Y : UU, iscontr X -> (Y ≃ X × Y).
Show proof.
intros X Y iscontrX.
intermediate_weq (Y × X).
- apply dirprod_with_contr_r; assumption.
- apply weqdirprodcomm.
intermediate_weq (Y × X).
- apply dirprod_with_contr_r; assumption.
- apply weqdirprodcomm.