{-# OPTIONS --safe #-}
module Cubical.Functions.FunExtEquiv where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.CartesianKanOps
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Data.Vec.Base
open import Cubical.Data.Vec.NAry
open import Cubical.Data.Nat
open import Cubical.Reflection.StrictEquiv
private
variable
ℓ ℓ₁ ℓ₂ ℓ₃ : Level
module _ {A : Type ℓ} {B : A → I → Type ℓ₁}
{f : (x : A) → B x i0} {g : (x : A) → B x i1} where
funExtEquiv : (∀ x → PathP (B x) (f x) (g x)) ≃ PathP (λ i → ∀ x → B x i) f g
unquoteDef funExtEquiv = defStrictEquiv funExtEquiv funExt funExt⁻
funExtPath : (∀ x → PathP (B x) (f x) (g x)) ≡ PathP (λ i → ∀ x → B x i) f g
funExtPath = ua funExtEquiv
funExtIso : Iso (∀ x → PathP (B x) (f x) (g x)) (PathP (λ i → ∀ x → B x i) f g)
funExtIso = iso funExt funExt⁻ (λ x → refl {x = x}) (λ x → refl {x = x})
funExt₂ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂}
{f : (x : A) → (y : B x) → C x y i0}
{g : (x : A) → (y : B x) → C x y i1}
→ ((x : A) (y : B x) → PathP (C x y) (f x y) (g x y))
→ PathP (λ i → ∀ x y → C x y i) f g
funExt₂ p i x y = p x y i
module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂}
{f : (x : A) → (y : B x) → C x y i0}
{g : (x : A) → (y : B x) → C x y i1} where
private
appl₂ : PathP (λ i → ∀ x y → C x y i) f g → ∀ x y → PathP (C x y) (f x y) (g x y)
appl₂ eq x y i = eq i x y
funExt₂Equiv : (∀ x y → PathP (C x y) (f x y) (g x y)) ≃ (PathP (λ i → ∀ x y → C x y i) f g)
unquoteDef funExt₂Equiv = defStrictEquiv funExt₂Equiv funExt₂ appl₂
funExt₂Path : (∀ x y → PathP (C x y) (f x y) (g x y)) ≡ (PathP (λ i → ∀ x y → C x y i) f g)
funExt₂Path = ua funExt₂Equiv
funExt₃ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂}
{D : (x : A) → (y : B x) → C x y → I → Type ℓ₃}
{f : (x : A) → (y : B x) → (z : C x y) → D x y z i0}
{g : (x : A) → (y : B x) → (z : C x y) → D x y z i1}
→ ((x : A) (y : B x) (z : C x y) → PathP (D x y z) (f x y z) (g x y z))
→ PathP (λ i → ∀ x y z → D x y z i) f g
funExt₃ p i x y z = p x y z i
module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂}
{D : (x : A) → (y : B x) → C x y → I → Type ℓ₃}
{f : (x : A) → (y : B x) → (z : C x y) → D x y z i0}
{g : (x : A) → (y : B x) → (z : C x y) → D x y z i1} where
private
appl₃ : PathP (λ i → ∀ x y z → D x y z i) f g → ∀ x y z → PathP (D x y z) (f x y z) (g x y z)
appl₃ eq x y z i = eq i x y z
funExt₃Equiv : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≃ (PathP (λ i → ∀ x y z → D x y z i) f g)
unquoteDef funExt₃Equiv = defStrictEquiv funExt₃Equiv funExt₃ appl₃
funExt₃Path : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≡ (PathP (λ i → ∀ x y z → D x y z i) f g)
funExt₃Path = ua funExt₃Equiv
nAryFunExt : {X : Type ℓ} {Y : I → Type ℓ₁} (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
→ ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs))
→ PathP (λ i → nAryOp n X (Y i)) fX fY
nAryFunExt zero fX fY p = p []
nAryFunExt (suc n) fX fY p i x = nAryFunExt n (fX x) (fY x) (λ xs → p (x ∷ xs)) i
nAryFunExt⁻ : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
→ PathP (λ i → nAryOp n X (Y i)) fX fY
→ ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs))
nAryFunExt⁻ zero fX fY p [] = p
nAryFunExt⁻ (suc n) fX fY p (x ∷ xs) = nAryFunExt⁻ n (fX x) (fY x) (λ i → p i x) xs
nAryFunExtEquiv : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
→ ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) ≃ PathP (λ i → nAryOp n X (Y i)) fX fY
nAryFunExtEquiv n {X} {Y} fX fY = isoToEquiv (iso (nAryFunExt n fX fY) (nAryFunExt⁻ n fX fY)
(linv n fX fY) (rinv n fX fY))
where
linv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
(p : PathP (λ i → nAryOp n X (Y i)) fX fY)
→ nAryFunExt n fX fY (nAryFunExt⁻ n fX fY p) ≡ p
linv zero fX fY p = refl
linv (suc n) fX fY p i j x = linv n (fX x) (fY x) (λ k → p k x) i j
rinv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
(p : (xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs))
→ nAryFunExt⁻ n fX fY (nAryFunExt n fX fY p) ≡ p
rinv zero fX fY p i [] = p []
rinv (suc n) fX fY p i (x ∷ xs) = rinv n (fX x) (fY x) (λ ys i → p (x ∷ ys) i) i xs
funExtDep : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁}
{f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x}
→ ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁))
→ PathP (λ i → (x : A i) → B i x) f g
funExtDep {A = A} {B} {f} {g} h i x =
comp
(λ k → B i (coei→i A i x k))
(λ k → λ
{ (i = i0) → f (coei→i A i0 x k)
; (i = i1) → g (coei→i A i1 x k)
})
(h (λ j → coei→j A i j x) i)
funExtDep⁻ : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁}
{f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x}
→ PathP (λ i → (x : A i) → B i x) f g
→ ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁))
funExtDep⁻ q p i = q i (p i)
funExtDepEquiv : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁}
{f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x}
→ ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁))
≃ PathP (λ i → (x : A i) → B i x) f g
funExtDepEquiv {A = A} {B} {f} {g} = isoToEquiv isom
where
open Iso
isom : Iso _ _
isom .fun = funExtDep
isom .inv = funExtDep⁻
isom .rightInv q m i x =
comp
(λ k → B i (coei→i A i x (k ∨ m)))
(λ k → λ
{ (i = i0) → f (coei→i A i0 x (k ∨ m))
; (i = i1) → g (coei→i A i1 x (k ∨ m))
; (m = i1) → q i x
})
(q i (coei→i A i x m))
isom .leftInv h m p i =
comp
(λ k → B i (lemi→i m k))
(λ k → λ
{ (i = i0) → f (lemi→i m k)
; (i = i1) → g (lemi→i m k)
; (m = i1) → h p i
})
(h (λ j → lemi→j j m) i)
where
lemi→j : ∀ j → coei→j A i j (p i) ≡ p j
lemi→j j =
coei→j (λ k → coei→j A i k (p i) ≡ p k) i j (coei→i A i (p i))
lemi→i : PathP (λ m → lemi→j i m ≡ p i) (coei→i A i (p i)) refl
lemi→i =
sym (coei→i (λ k → coei→j A i k (p i) ≡ p k) i (coei→i A i (p i)))
◁ λ m k → lemi→j i (m ∨ k)
heteroHomotopy≃Homotopy : {A : I → Type ℓ} {B : (i : I) → Type ℓ₁}
{f : A i0 → B i0} {g : A i1 → B i1}
→ ({x₀ : A i0} {x₁ : A i1} → PathP A x₀ x₁ → PathP B (f x₀) (g x₁))
≃ ((x₀ : A i0) → PathP B (f x₀) (g (transport (λ i → A i) x₀)))
heteroHomotopy≃Homotopy {A = A} {B} {f} {g} = isoToEquiv isom
where
open Iso
isom : Iso _ _
isom .fun h x₀ = h (isContrSinglP A x₀ .fst .snd)
isom .inv k {x₀} {x₁} p =
subst (λ fib → PathP B (f x₀) (g (fib .fst))) (isContrSinglP A x₀ .snd (x₁ , p)) (k x₀)
isom .rightInv k = funExt λ x₀ →
cong (λ α → subst (λ fib → PathP B (f x₀) (g (fib .fst))) α (k x₀))
(isProp→isSet isPropSinglP (isContrSinglP A x₀ .fst) _
(isContrSinglP A x₀ .snd (isContrSinglP A x₀ .fst))
refl)
∙ transportRefl (k x₀)
isom .leftInv h j {x₀} {x₁} p =
transp
(λ i → PathP B (f x₀) (g (isContrSinglP A x₀ .snd (x₁ , p) (i ∨ j) .fst)))
j
(h (isContrSinglP A x₀ .snd (x₁ , p) j .snd))