Martin Escardo 25th October 2018.

The type of partial elements of a type (or lifting). Constructions and
properties of lifting are discussed in other modules.

\begin{code}

{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}

open import MLTT.Spartan

module Lifting.Lifting (𝓣 : Universe) where

open import UF.Subsingletons

𝓛 : 𝓤 ̇  𝓣    𝓤 ̇
𝓛 X = Σ P  𝓣 ̇ , (P  X) × is-prop P

is-defined : {X : 𝓤 ̇ }  𝓛 X  𝓣 ̇

is-defined (P , φ , i) = P

being-defined-is-prop : {X : 𝓤 ̇ } (l : 𝓛  X)  is-prop (is-defined l)
being-defined-is-prop (P , φ , i) = i

value : {X : 𝓤 ̇ } (l : 𝓛  X)  is-defined l  X
value (P , φ , i) = φ

\end{code}

The "total" elements of 𝓛 X:

\begin{code}

η : {X : 𝓤 ̇ }  X  𝓛 X
η x = 𝟙 ,  _  x) , 𝟙-is-prop

\end{code}

Its "undefined" element:

\begin{code}

 : {X : 𝓤 ̇ }  𝓛 X
 = 𝟘 , unique-from-𝟘 , 𝟘-is-prop

\end{code}