Martin Escardo 25th October 2018.
The type of partial elements of a type (or lifting). Constructions and
properties of lifting are discussed in other modules.
\begin{code}
{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}
open import MLTT.Spartan
module Lifting.Lifting (𝓣 : Universe) where
open import UF.Subsingletons
𝓛 : 𝓤 ̇ → 𝓣 ⁺ ⊔ 𝓤 ̇
𝓛 X = Σ P ꞉ 𝓣 ̇ , (P → X) × is-prop P
is-defined : {X : 𝓤 ̇ } → 𝓛 X → 𝓣 ̇
is-defined (P , φ , i) = P
being-defined-is-prop : {X : 𝓤 ̇ } (l : 𝓛 X) → is-prop (is-defined l)
being-defined-is-prop (P , φ , i) = i
value : {X : 𝓤 ̇ } (l : 𝓛 X) → is-defined l → X
value (P , φ , i) = φ
\end{code}
The "total" elements of 𝓛 X:
\begin{code}
η : {X : 𝓤 ̇ } → X → 𝓛 X
η x = 𝟙 , (λ _ → x) , 𝟙-is-prop
\end{code}
Its "undefined" element:
\begin{code}
⊥ : {X : 𝓤 ̇ } → 𝓛 X
⊥ = 𝟘 , unique-from-𝟘 , 𝟘-is-prop
\end{code}