Martin Escardo 1st May 2020.

This is ported from the Midlands Graduate School 2019 lecture notes

 https://www.cs.bham.ac.uk/~mhe/HoTT-UF.in-Agda-Lecture-Notes/HoTT-UF-Agda.html
 https://github.com/martinescardo/HoTT-UF.Agda-Lecture-Notes

\begin{code}

{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}

module MGS.Equivalence-Constructions where

open import MGS.More-FunExt-Consequences public

id-≃-left : dfunext 𝓥 (𝓤  𝓥)
           dfunext (𝓤  𝓥) (𝓤  𝓥)
           {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (α : X  Y)
           id-≃ X  α  α

id-≃-left fe fe' α = to-subtype-= (being-equiv-is-subsingleton fe fe') (refl _)

≃-sym-left-inverse : dfunext 𝓥 𝓥
                    {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (α : X  Y)
                    ≃-sym α  α  id-≃ Y

≃-sym-left-inverse fe (f , e) = to-subtype-= (being-equiv-is-subsingleton fe fe) p
 where
  p : f  inverse f e  id
  p = fe (inverses-are-sections f e)

≃-sym-right-inverse : dfunext 𝓤 𝓤
                     {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (α : X  Y)
                     α  ≃-sym α  id-≃ X

≃-sym-right-inverse fe (f , e) = to-subtype-= (being-equiv-is-subsingleton fe fe) p
 where
  p : inverse f e  f  id
  p = fe (inverses-are-retractions f e)

≃-Sym : dfunext 𝓥 (𝓤  𝓥)  dfunext 𝓤 (𝓤  𝓥)  dfunext (𝓤  𝓥) (𝓤  𝓥)
       {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
       (X  Y)  (Y  X)

≃-Sym fe₀ fe₁ fe₂ = ≃-sym , ≃-sym-is-equiv fe₀ fe₁ fe₂

≃-cong' : dfunext 𝓦 (𝓥  𝓦)  dfunext (𝓥  𝓦) (𝓥  𝓦 )
        dfunext 𝓥 𝓥  dfunext 𝓦 (𝓤  𝓦)
        dfunext (𝓤  𝓦) (𝓤  𝓦 )  dfunext 𝓤 𝓤
        {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (Z : 𝓦 ̇ )
        X  Y  (Y  Z)  (X  Z)

≃-cong' fe₀ fe₁ fe₂ fe₃ fe₄ fe₅ Z α = invertibility-gives-≃ (α ●_)
                                      ((≃-sym α ●_) , p , q)
 where
  p = λ β  ≃-sym α  (α  β) =⟨ ●-assoc fe₀ fe₁ (≃-sym α) α β 
            (≃-sym α  α)  β =⟨ ap (_● β) (≃-sym-left-inverse fe₂ α) 
            id-≃ _  β        =⟨ id-≃-left fe₀ fe₁ _ 
            β                 

  q = λ γ  α  (≃-sym α  γ) =⟨ ●-assoc fe₃ fe₄ α (≃-sym α) γ 
            (α  ≃-sym α)  γ =⟨ ap (_● γ) (≃-sym-right-inverse fe₅ α) 
            id-≃ _  γ        =⟨ id-≃-left fe₃ fe₄ _ 
            γ                 

Eq-Eq-cong' : dfunext 𝓥 (𝓤  𝓥)  dfunext (𝓤  𝓥) (𝓤  𝓥)  dfunext 𝓤 𝓤
             dfunext 𝓥 (𝓥  𝓦)  dfunext (𝓥  𝓦) (𝓥  𝓦)  dfunext 𝓦 𝓦
             dfunext 𝓦 (𝓥  𝓦)  dfunext 𝓥 𝓥  dfunext 𝓦 (𝓦  𝓣)
             dfunext (𝓦  𝓣) (𝓦  𝓣)  dfunext 𝓣 𝓣  dfunext 𝓣 (𝓦  𝓣)
             {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : 𝓦 ̇ } {B : 𝓣 ̇ }
             X  A  Y  B  (X  Y)  (A  B)

Eq-Eq-cong' fe₀ fe₁ fe₂ fe₃ fe₄ fe₅ fe₆ fe₇ fe₈ fe₉ fe₁₀ fe₁₁ {X} {Y} {A} {B} α β =

  X  Y   ≃⟨ ≃-cong' fe₀ fe₁ fe₂ fe₃ fe₄ fe₅ Y (≃-sym α) 
  A  Y   ≃⟨ ≃-Sym fe₃ fe₆ fe₄ 
  Y  A   ≃⟨ ≃-cong' fe₆ fe₄ fe₇ fe₈ fe₉ fe₁₀ A (≃-sym β) 
  B  A   ≃⟨ ≃-Sym fe₈ fe₁₁ fe₉ 
  A  B   

Eq-Eq-cong : global-dfunext
            {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : 𝓦 ̇ } {B : 𝓣 ̇ }
            X  A  Y  B  (X  Y)  (A  B)

Eq-Eq-cong fe = Eq-Eq-cong' fe fe fe fe fe fe fe fe fe fe fe fe

\end{code}