Martin Escardo 1st May 2020.

This is ported from the Midlands Graduate School 2019 lecture notes

 https://www.cs.bham.ac.uk/~mhe/HoTT-UF.in-Agda-Lecture-Notes/HoTT-UF-Agda.html
 https://github.com/martinescardo/HoTT-UF.Agda-Lecture-Notes

\begin{code}

{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}

module MGS.Univalence where

open import MGS.Equivalences public

Id→Eq : (X Y : 𝓤 ̇ )  X  Y  X  Y
Id→Eq X X (refl X) = id-≃ X

is-univalent : (𝓤 : Universe)  𝓤  ̇
is-univalent 𝓤 = (X Y : 𝓤 ̇ )  is-equiv (Id→Eq X Y)

univalence-≃ : is-univalent 𝓤  (X Y : 𝓤 ̇ )  (X  Y)  (X  Y)
univalence-≃ ua X Y = Id→Eq X Y , ua X Y

Eq→Id : is-univalent 𝓤  (X Y : 𝓤 ̇ )  X  Y  X  Y
Eq→Id ua X Y = inverse (Id→Eq X Y) (ua X Y)

Id→fun : {X Y : 𝓤 ̇ }  X  Y  X  Y
Id→fun {𝓤} {X} {Y} p =  Id→Eq X Y p 

Id→funs-agree : {X Y : 𝓤 ̇ } (p : X  Y)
               Id→fun p  Id→Fun p
Id→funs-agree (refl X) = refl (𝑖𝑑 X)

swap₂ : 𝟚  𝟚
swap₂  = 
swap₂  = 

swap₂-involutive : (n : 𝟚)  swap₂ (swap₂ n)  n
swap₂-involutive  = refl 
swap₂-involutive  = refl 

swap₂-is-equiv : is-equiv swap₂
swap₂-is-equiv = invertibles-are-equivs
                  swap₂
                  (swap₂ , swap₂-involutive , swap₂-involutive)

module example-of-a-nonset (ua : is-univalent 𝓤₀) where

 e₀ e₁ : 𝟚  𝟚
 e₀ = id-≃ 𝟚
 e₁ = swap₂ , swap₂-is-equiv

 e₀-is-not-e₁ : e₀  e₁
 e₀-is-not-e₁ p = ₁-is-not-₀ r
  where
   q : id  swap₂
   q = ap ⌜_⌝ p

   r :   
   r = ap  -  - ) q

 p₀ p₁ : 𝟚  𝟚
 p₀ = Eq→Id ua 𝟚 𝟚 e₀
 p₁ = Eq→Id ua 𝟚 𝟚 e₁

 p₀-is-not-p₁ : p₀  p₁
 p₀-is-not-p₁ q = e₀-is-not-e₁ r
  where
   r = e₀            =⟨ (inverses-are-sections (Id→Eq 𝟚 𝟚) (ua 𝟚 𝟚) e₀)⁻¹ 
       Id→Eq 𝟚 𝟚 p₀  =⟨ ap (Id→Eq 𝟚 𝟚) q 
       Id→Eq 𝟚 𝟚 p₁  =⟨ inverses-are-sections (Id→Eq 𝟚 𝟚) (ua 𝟚 𝟚) e₁ 
       e₁            

 𝓤₀-is-not-a-set : ¬ (is-set (𝓤₀ ̇ ))
 𝓤₀-is-not-a-set s = p₀-is-not-p₁ q
  where
   q : p₀  p₁
   q = s 𝟚 𝟚 p₀ p₁

\end{code}