Martin Escardo, 13th January 2021. Interface to code from my MGS 2019 lecture notes. \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} module UF.Lower-FunExt where open import MLTT.Spartan open import UF.Base open import UF.Equiv open import UF.FunExt open import MGS.TypeTopology-Interface import MGS.Equivalences import MGS.FunExt-from-Univalence import MGS.Universe-Lifting abstract lower-DN-funext : ∀ 𝓦 𝓣 → DN-funext (𝓤 ⊔ 𝓦) (𝓥 ⊔ 𝓣) → DN-funext 𝓤 𝓥 lower-DN-funext {𝓤} {𝓥} 𝓦 𝓣 fe = MGS.Universe-Lifting.lower-dfunext 𝓦 𝓣 𝓤 𝓥 fe DN-funext-gives-funext : {𝓤 𝓥 : Universe} → DN-funext 𝓤 𝓥 → funext 𝓤 𝓥 DN-funext-gives-funext dnfe {X} {A} f g = γ where h : f = g → f ∼ g h = MGS.FunExt-from-Univalence.happly f g a : is-equiv h a = MGS-equivs-are-equivs h (MGS.FunExt-from-Univalence.dfunext-gives-hfunext dnfe f g) b : is-equiv (happly' f g) b = equiv-closed-under-∼ h (happly' f g) a (happly'-is-MGS-happly f g) c : MGS.Equivalences.is-equiv (happly' f g) c = equivs-are-MGS-equivs (happly' f g) b γ : is-equiv (happly' f g) γ = MGS-equivs-are-equivs (happly' f g) c lower-funext : ∀ 𝓦 𝓣 → funext (𝓤 ⊔ 𝓦) (𝓥 ⊔ 𝓣) → funext 𝓤 𝓥 lower-funext {𝓤} {𝓥} 𝓦 𝓣 fe = DN-funext-gives-funext (lower-DN-funext 𝓦 𝓣 (dfunext fe)) lower-fun-ext : ∀ {𝓦} 𝓣 → funext (𝓤 ⊔ 𝓦) (𝓥 ⊔ 𝓣) → funext 𝓤 𝓥 lower-fun-ext {𝓤} {𝓥} {𝓦} 𝓣 fe = DN-funext-gives-funext (lower-DN-funext 𝓦 𝓣 (dfunext fe)) \end{code}