Martin Escardo 7th December 2018. We show that the natural map into the lifting is an embedding using the structure identity principle. A more direct, but longer, proof is in the module Lifting.EmbeddingDirectly. \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} open import MLTT.Spartan module Lifting.EmbeddingViaSIP (𝓣 𝓤 : Universe) (X : 𝓤 ̇ ) where open import UF.Base open import UF.Subsingletons open import UF.Subsingletons-FunExt open import UF.Embeddings open import UF.Equiv open import UF.EquivalenceExamples open import UF.FunExt open import UF.Univalence open import UF.UA-FunExt open import Lifting.Lifting 𝓣 open import Lifting.IdentityViaSIP 𝓣 \end{code} The crucial point the use the characterization of identity via the structure identity principle: \begin{code} η-is-embedding' : is-univalent 𝓣 → funext 𝓣 𝓤 → is-embedding (η {𝓤} {X}) η-is-embedding' ua fe = embedding-criterion' η c where a = (𝟙 ≃ 𝟙) ≃⟨ ≃-sym (univalence-≃ ua 𝟙 𝟙) ⟩ (𝟙 = 𝟙) ≃⟨ 𝟙-=-≃ 𝟙 (univalence-gives-funext ua) (univalence-gives-propext ua) 𝟙-is-prop ⟩ 𝟙 ■ b = λ x y → ((λ _ → x) = (λ _ → y)) ≃⟨ ≃-funext fe (λ _ → x) (λ _ → y) ⟩ (𝟙 → x = y) ≃⟨ ≃-sym (𝟙→ fe) ⟩ (x = y) ■ c = λ x y → (η x = η y) ≃⟨ 𝓛-Id ua (η x) (η y) ⟩ (𝟙 ≃ 𝟙) × ((λ _ → x) = (λ _ → y)) ≃⟨ ×-cong a (b x y) ⟩ 𝟙 × (x = y) ≃⟨ 𝟙-lneutral ⟩ (x = y) ■ \end{code}