Martin Escardo 24th January 2019 Size matters. \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} open import MLTT.Spartan module Lifting.Size (π£ : Universe) where open import UF.Subsingletons open import UF.Size open import UF.Equiv open import UF.Univalence open import UF.FunExt open import UF.UA-FunExt open import UF.EquivalenceExamples open import Lifting.Lifting π£ open import Lifting.IdentityViaSIP \end{code} As one can see from the definition of π, we have that π lives in a universe strictly higher than that of X in general: \begin{code} the-universe-of-π : {X : π€ Μ } β universe-of (π X) οΌ π£ βΊ β π€ the-universe-of-π = refl \end{code} However, if the argument is in π£ βΊ β π€, then the size doesn't increase: \begin{code} π-universe-preservation : {X : π£ βΊ β π€ Μ } β universe-of (π X) οΌ universe-of X π-universe-preservation = refl \end{code} In particular, after the first application of π, further applications don't increase the size: \begin{code} the-universe-of-ππ : {X : π€ Μ } β universe-of (π (π X)) οΌ universe-of (π X) the-universe-of-ππ = refl \end{code} As a particular case of the above, if π£ and π€ are the same universe, then the first application of π has its result in the next universe π£βΊ. \begin{code} the-universe-of-π' : {X : π£ Μ } β universe-of (π X) οΌ π£ βΊ the-universe-of-π' = refl \end{code} But if π€ is taken to be the successor π£ βΊ of π£ then it is preserved by π: \begin{code} the-universe-of-πβΊ : {X : π£ βΊ Μ } β universe-of (π X) οΌ universe-of X the-universe-of-πβΊ = refl \end{code} With weak propositional resizing (any proposition of any universe has a logically equivalent copy in any universe), π preserves all universes except the first, i.e., all successor universes π€ βΊ. \begin{code} π-resize : is-univalent π£ β is-univalent π€ β Propositional-resizing β (X : π€ βΊ Μ ) β (π X) is (π€ βΊ) small π-resize {π€} ua ua' Ο X = L , e where L : π€ βΊ Μ L = Ξ£ P κ π€ Μ , (P β X) Γ is-prop P e : L β π X e = qinveq Ο (Ξ³ , Ξ³Ο , ΟΞ³) where Ο : L β π X Ο (P , f , i) = resize Ο P i , f β from-resize Ο P i , resize-is-prop Ο P i Ξ³ : π X β L Ξ³ (Q , g , j) = resize Ο Q j , g β from-resize Ο Q j , resize-is-prop Ο Q j ΟΞ³ : (l : π X) β Ο (Ξ³ l) οΌ l ΟΞ³ (Q , g , j) = β-gives-οΌ π£ ua (a , b) where a : resize Ο (resize Ο Q j) (resize-is-prop Ο Q j) β Q a = qinveq (from-resize Ο Q j β from-resize Ο (resize Ο Q j) (resize-is-prop Ο Q j)) (to-resize Ο (resize Ο Q j) (resize-is-prop Ο Q j) β to-resize Ο Q j , (Ξ» r β resize-is-prop Ο (resize Ο Q j) (resize-is-prop Ο Q j) _ r) , (Ξ» q β j _ q)) b : g β from-resize Ο Q j β from-resize Ο (resize Ο Q j) (resize-is-prop Ο Q j) οΌ g β β a β b = ap (g β_) (dfunext (univalence-gives-funext ua) (Ξ» r β j _ (β a β r))) Ξ³Ο : (m : L) β Ξ³ (Ο m) οΌ m Ξ³Ο (P , f , i) = β-gives-οΌ π€ ua' (a , b) where a : resize Ο (resize Ο P i) (resize-is-prop Ο P i) β P a = qinveq (from-resize Ο P i β from-resize Ο (resize Ο P i) (resize-is-prop Ο P i)) (to-resize Ο (resize Ο P i) (resize-is-prop Ο P i) β to-resize Ο P i , (Ξ» r β resize-is-prop Ο (resize Ο P i) (resize-is-prop Ο P i) _ r) , (Ξ» q β i _ q)) b : f β from-resize Ο P i β from-resize Ο (resize Ο P i) (resize-is-prop Ο P i) οΌ f β β a β b = ap (f β_) (dfunext (univalence-gives-funext ua') (Ξ» r β i _ (β a β r))) \end{code} TODO. The above proof can be simplified. NB. With a more careful treatment everywhere (including the structure identity principle), we can relax the assumption that π£ and π€ are univalent to the assumption that π£ satisfies propositional and functional extensionality. But this is probably not worth the trouble, as it would imply developing a copy of the SIP with this different assumption. Added 8th Feb 2019. \begin{code} π-resizingβ : Ξ©-resizingβ π£ β (X : π£ Μ ) β (π X) is π£ small π-resizingβ (Ξ©β , eβ) X = (Ξ£ p κ Ξ©β , (up p holds β X)) , β-comp d e where up : Ξ©β β Ξ© π£ up = β eβ β up-is-equiv : is-equiv up up-is-equiv = ββ-is-equiv eβ d : (Ξ£ p κ Ξ©β , (up p holds β X)) β (Ξ£ p κ Ξ© π£ , (p holds β X)) d = Ξ£-change-of-variable (Ξ» p β p holds β X) up up-is-equiv e : (Ξ£ p κ Ξ© π£ , (p holds β X)) β π X e = qinveq (Ξ» ((P , i) , f) β P , f , i) ((Ξ» (P , f , i) β (P , i) , f) , (Ξ» _ β refl) , (Ξ» _ β refl)) \end{code} Added 15th Feb 2019. The proof is literally the same, the assumption is more parsimonious. \begin{code} π-resizing : Ξ©-resizing π£ β (X : π£ Μ ) β (π X) is π£ small π-resizing (O , Ξ΅) X = (Ξ£ p κ O , (up p holds β X)) , β-comp d e where up : O β Ξ© π£ up = β Ξ΅ β up-is-equiv : is-equiv up up-is-equiv = ββ-is-equiv Ξ΅ d : (Ξ£ p κ O , (up p holds β X)) β (Ξ£ p κ Ξ© π£ , (p holds β X)) d = Ξ£-change-of-variable (Ξ» p β p holds β X) up up-is-equiv e : (Ξ£ p κ Ξ© π£ , (p holds β X)) β π X e = qinveq (Ξ» ((P , i) , f) β P , f , i) ((Ξ» (P , f , i) β (P , i) , f) , (Ξ» _ β refl) , (Ξ» _ β refl)) \end{code}