Natural numbers \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} module Naturals.Properties where open import MLTT.Universes open import MLTT.NaturalNumbers open import MLTT.Negation open import MLTT.Id open import MLTT.Empty open import MLTT.Unit open import MLTT.Unit-Properties pred : ℕ → ℕ pred 0 = 0 pred (succ n) = n succ-lc : {i j : ℕ} → succ i = succ j → i = j succ-lc = ap pred positive-not-zero : (x : ℕ) → succ x ≠ 0 positive-not-zero x p = 𝟙-is-not-𝟘 (g p) where f : ℕ → 𝓤₀ ̇ f 0 = 𝟘 f (succ x) = 𝟙 g : succ x = 0 → 𝟙 = 𝟘 g = ap f zero-not-positive : (x : ℕ) → 0 ≠ succ x zero-not-positive x p = positive-not-zero x (p ⁻¹) succ-no-fp : (n : ℕ) → n ≠ succ n succ-no-fp zero p = positive-not-zero 0 (p ⁻¹) succ-no-fp (succ n) p = succ-no-fp n (succ-lc p) ℕ-cases : {P : ℕ → 𝓦 ̇ } (n : ℕ) → (n = zero → P n) → ((m : ℕ) → n = succ m → P n) → P n ℕ-cases {𝓦} {P} zero c₀ cₛ = c₀ refl ℕ-cases {𝓦} {P} (succ n) c₀ cₛ = cₛ n refl \end{code} Added 12/05/2022 by Andrew Sneap. \begin{code} succ-pred : (x : ℕ) → succ (pred (succ x)) = succ x succ-pred x = refl succ-pred' : (x : ℕ) → ¬ (x = 0) → succ (pred x) = x succ-pred' zero nz = 𝟘-elim (nz refl) succ-pred' (succ n) _ = refl pred-succ : (x : ℕ) → pred (succ x) = x pred-succ x = refl \end{code}