Martin Escardo, 29 June 2018 Some operations and constructions on ordinals. \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} open import UF.FunExt module Ordinals.Arithmetic (fe : FunExt) where open import CoNaturals.GenericConvergentSequence open import MLTT.Spartan open import Naturals.Order open import Ordinals.Notions open import Ordinals.Type open import Ordinals.Underlying open import Ordinals.WellOrderArithmetic open import UF.Subsingletons prop-ordinal : (P : 𝓤 ̇ ) → is-prop P → Ordinal 𝓤 prop-ordinal P i = P , prop.order P i , prop.well-order P i Ω-to-ordinal : Ω 𝓤 → Ordinal 𝓤 Ω-to-ordinal (P , i) = prop-ordinal P i prop-ordinal-is-trichotomous : (p : Ω 𝓤) → is-trichotomous (Ω-to-ordinal p) prop-ordinal-is-trichotomous (P , i) = prop.trichotomous P i \end{code} Here the subscript is the letter "o": \begin{code} 𝟘ₒ 𝟙ₒ : {𝓤 : Universe} → Ordinal 𝓤 𝟘ₒ = Ω-to-ordinal ⊥Ω 𝟙ₒ = Ω-to-ordinal ⊤Ω 𝟘ₒ-is-trichotomous : is-trichotomous (𝟘ₒ {𝓤}) 𝟘ₒ-is-trichotomous = prop-ordinal-is-trichotomous ⊥Ω 𝟙ₒ-is-trichotomous : is-trichotomous (𝟙ₒ {𝓤}) 𝟙ₒ-is-trichotomous = prop-ordinal-is-trichotomous ⊤Ω \end{code} Here the subscript is the number "0" on the left and the letter "o" on the righthand side of the equality sign: \begin{code} 𝟘₀ 𝟙₀ : Ord 𝟘₀ = 𝟘ₒ 𝟙₀ = 𝟙ₒ \end{code} Here the subscript is the letter "o": \begin{code} ω ℕ∞ₒ : Ord ω = (ℕ , _<ℕ_ , ℕ-ordinal) ℕ∞ₒ = (ℕ∞ , _≺ℕ∞_ , ℕ∞-ordinal (fe 𝓤₀ 𝓤₀)) ω-is-trichotomous : is-trichotomous ω ω-is-trichotomous = <-trichotomous \end{code} There is trouble generalizing the type of the following definition of ordinal addition to Ordinal 𝓤 → Ordinal 𝓥 → Ordinal (𝓤 ⊔ 𝓥). Check plus.order to see why. \begin{code} _+ₒ_ : Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤 (X , _<_ , o) +ₒ (Y , _≺_ , p) = (X + Y) , plus.order _<_ _≺_ , plus.well-order _<_ _≺_ o p +ₒ-is-trichotomous : (α β : Ordinal 𝓤) → is-trichotomous α → is-trichotomous β → is-trichotomous (α +ₒ β) +ₒ-is-trichotomous α β = plus.trichotomy-preservation _ _ _×ₒ_ : Ordinal 𝓤 → Ordinal 𝓥 → Ordinal (𝓤 ⊔ 𝓥) (X , _<_ , o) ×ₒ (Y , _≺_ , p) = (X × Y) , times.order _<_ _≺_ , times.well-order _<_ _≺_ fe o p ×ₒ-is-trichotomous : (α : Ordinal 𝓤) (β : Ordinal 𝓥) → is-trichotomous α → is-trichotomous β → is-trichotomous (α ×ₒ β) ×ₒ-is-trichotomous α β = times.trichotomy-preservation _ _ 𝟚ₒ : {𝓤 : Universe} → Ordinal 𝓤 𝟚ₒ = 𝟙ₒ +ₒ 𝟙ₒ 𝟚ₒ-is-trichotomous : is-trichotomous (𝟚ₒ {𝓤}) 𝟚ₒ-is-trichotomous = +ₒ-is-trichotomous 𝟙ₒ 𝟙ₒ 𝟙ₒ-is-trichotomous 𝟙ₒ-is-trichotomous prop-indexed-product : {P : 𝓤 ̇ } → is-prop P → (P → Ordinal 𝓥) → Ordinal (𝓤 ⊔ 𝓥) prop-indexed-product {𝓤} {𝓥} {P} i α = Π X , _≺_ , w where X : P → 𝓥 ̇ X p = ⟨ α p ⟩ _<_ : {p : P} → X p → X p → 𝓥 ̇ _<_ {p} x y = x ≺⟨ α p ⟩ y _≺_ : Π X → Π X → 𝓤 ⊔ 𝓥 ̇ f ≺ g = Σ p ꞉ P , f p < g p w : is-well-order _≺_ w = pip.well-order (fe 𝓤 𝓥) P i X _<_ (λ p → is-well-ordered (α p)) \end{code} Miscelanea: \begin{code} less-is-left : (α : Ord) (x y : ⟨ α +ₒ 𝟙ₒ ⟩) → x ≺⟨ α +ₒ 𝟙ₒ ⟩ y → Σ a ꞉ ⟨ α ⟩ , x = inl a less-is-left α (inl a) y l = a , refl less-is-left α (inr *) (inl a) l = 𝟘-elim l less-is-left α (inr *) (inr *) l = 𝟘-elim l right-is-not-smaller : (α : Ord) (y : ⟨ α +ₒ 𝟙ₒ ⟩) → ¬ (inr ⋆ ≺⟨ α +ₒ 𝟙ₒ ⟩ y) right-is-not-smaller α (inl a) l = 𝟘-elim l right-is-not-smaller α (inr ⋆) l = 𝟘-elim l \end{code} Added 3rd May 2022. Sums of ordinals indexed by ordinals don't always exist. See the module OrdinalsShulmanTaboo. They do exist for trichotomous and cotransitive ordinals. See the module OrdinalsWellOrderArithmetic. Notice that trichotomy implies cotransitivity. See the module OrdinalNotions. Both trichotomy and cotransitivity are implied by excluded middle. \begin{code} open import UF.ExcludedMiddle module sums-assuming-EM (em : EM 𝓤) where ∑ : (α : Ordinal 𝓤) → (⟨ α ⟩ → Ordinal 𝓤) → Ordinal 𝓤 ∑ α@(X , _<_ , o) β = (Σ x ꞉ X , ⟨ β x ⟩) , Sum.order , Sum.well-order o (λ x → is-well-ordered (β x)) where _≺_ : {x : X} → ⟨ β x ⟩ → ⟨ β x ⟩ → 𝓤 ̇ y ≺ z = y ≺⟨ β _ ⟩ z module Sum = sum-cotransitive fe _<_ _≺_ (em-gives-cotrans _<_ fe em (is-well-ordered α)) \end{code} Added 23rd May 2022. TODO. It is not in general possible to find a least element of an inhabited ordinal. In fact, consider the ordinal P + 𝟙 where P is a proposition. Then if we can find a least element of this ordinal, we can decide whether P or ¬ P. Similarly, we can't find a top element, unless excluded middle holds, by considering the ordinal 𝟙 + P.