Nicolai Kraus 2012.
This is adapted to our TypeTopology development by Martin Escardo, but
we keep Nicolai's original proof.
The main result is that the type of fixed-points of a weakly constant
endomap is a proposition, in pure MLTT without HoTT/UF extensions.
We also add some consequences obtained in joint work with Martin
Escardo, Thierry Coquand, and Thorsten Altenkirch.
\begin{code}
{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}
module UF.KrausLemma where
open import MLTT.Spartan
open import UF.Base
open import UF.Subsingletons
fix : {X : 𝓤 ̇ } → (f : X → X) → 𝓤 ̇
fix f = Σ x ꞉ domain f , x = f x
key-lemma : {X Y : 𝓤 ̇ } (f : X → Y) (g : wconstant f) {x y : X} (p : x = y)
→ ap f p = (g x x)⁻¹ ∙ g x y
key-lemma f g {x} refl = sym-is-inverse (g x x)
key-insight : {X Y : 𝓤 ̇ } (f : X → Y)
→ wconstant f
→ {x : X} (p : x = x) → ap f p = refl
key-insight f g p = key-lemma f g p ∙ (sym-is-inverse (g _ _))⁻¹
transport-ids-along-ids : {X Y : 𝓤 ̇ }
{x y : X}
(p : x = y)
(h k : X → Y)
(q : h x = k x)
→ transport (λ - → h - = k -) p q = (ap h p)⁻¹ ∙ q ∙ ap k p
transport-ids-along-ids refl h k q = refl-left-neutral ⁻¹
transport-ids-along-ids' : {X : 𝓤 ̇ }
{x : X}
(p : x = x)
(f : X → X)
(q : x = f x)
→ transport (λ - → - = f -) p q = (p ⁻¹ ∙ q) ∙ ap f p
transport-ids-along-ids' {𝓤} {X} {x} p f q = γ
where
g : x = x → x = f x
g r = r ⁻¹ ∙ q ∙ (ap f p)
γ : transport (λ - → - = f -) p q = p ⁻¹ ∙ q ∙ ap f p
γ = transport-ids-along-ids p id f q ∙ ap g ((ap-id-is-id' p)⁻¹)
\end{code}
The following is what we refer to as Kraus Lemma:
\begin{code}
fix-is-prop : {X : 𝓤 ̇ } → (f : X → X) → wconstant f → is-prop (fix f)
fix-is-prop {𝓤} {X} f g (x , p) (y , q) =
(x , p) =⟨ to-Σ-= (r , refl) ⟩
(y , p') =⟨ to-Σ-= (s , t) ⟩
(y , q) ∎
where
r : x = y
r = x =⟨ p ⟩
f x =⟨ g x y ⟩
f y =⟨ q ⁻¹ ⟩
y ∎
p' : y = f y
p' = transport (λ - → - = f -) r p
s : y = y
s = y =⟨ p' ⟩
f y =⟨ q ⁻¹ ⟩
y ∎
q' : y = f y
q' = transport (λ - → - = f -) s p'
t : q' = q
t = q' =⟨ transport-ids-along-ids' s f p' ⟩
(s ⁻¹ ∙ p') ∙ ap f s =⟨ ∙assoc (s ⁻¹) p' (ap f s) ⟩
s ⁻¹ ∙ (p' ∙ ap f s) =⟨ ap (λ - → s ⁻¹ ∙ (p' ∙ -)) (key-insight f g s) ⟩
s ⁻¹ ∙ (p' ∙ refl) =⟨ ap (λ - → s ⁻¹ ∙ -) ((refl-right-neutral p')⁻¹) ⟩
s ⁻¹ ∙ p' =⟨ refl ⟩
(p' ∙ (q ⁻¹))⁻¹ ∙ p' =⟨ ap (λ - → - ∙ p') ((⁻¹-contravariant p' (q ⁻¹))⁻¹) ⟩
((q ⁻¹)⁻¹ ∙ (p' ⁻¹)) ∙ p' =⟨ ap (λ - → (- ∙ (p' ⁻¹)) ∙ p') (⁻¹-involutive q) ⟩
(q ∙ (p' ⁻¹)) ∙ p' =⟨ ∙assoc q (p' ⁻¹) p' ⟩
q ∙ ((p' ⁻¹) ∙ p') =⟨ ap (λ - → q ∙ -) ((sym-is-inverse p')⁻¹) ⟩
q ∙ refl =⟨ (refl-right-neutral q)⁻¹ ⟩
q ∎
\end{code}
A main application is to show that, in pure spartan MLTT, if a type
has a wconstant endfunction then it has a propositional truncation.
\begin{code}
from-fix : {X : 𝓤 ̇ } (f : X → X) → fix f → X
from-fix f = pr₁
to-fix : {X : 𝓤 ̇ } (f : X → X) → wconstant f → X → fix f
to-fix f g x = (f x , g x (f x))
from-to-fix : {X : 𝓤 ̇ } (f : X → X) (κ : wconstant f)
→ from-fix f ∘ to-fix f κ ∼ f
from-to-fix f κ w = refl
to-from-fix : {X : 𝓤 ̇ } (f : X → X) (κ : wconstant f)
→ to-fix f κ ∘ from-fix f ∼ id
to-from-fix f κ _ = fix-is-prop f κ _ _
has-split-support' : 𝓤 ̇ → 𝓤 ⁺ ̇
has-split-support' {𝓤} X = Σ P ꞉ 𝓤 ̇ , is-prop P × (X ⇔ P)
fix-has-split-support' : {X : 𝓤 ̇ }
→ collapsible X
→ has-split-support' X
fix-has-split-support' {𝓤} {X} (f , κ) = fix f , fix-is-prop f κ , to-fix f κ , from-fix f
has-prop-truncation : (𝓥 : Universe) → 𝓤 ̇ → (𝓤 ⊔ 𝓥)⁺ ̇
has-prop-truncation {𝓤} 𝓥 X = Σ X' ꞉ 𝓤 ̇ , is-prop X'
× (X → X')
× ((P : 𝓥 ̇ ) → is-prop P → (X → P) → X' → P)
split-truncation : {X : 𝓤 ̇ } → has-split-support' X → ∀ 𝓥 → has-prop-truncation 𝓥 X
split-truncation {𝓤} {X} (X' , i , f , g) V = X' , i , f , λ P j h x' → h (g x')
collapsible-has-prop-truncation : {X : 𝓤 ̇ }
→ collapsible X
→ ∀ 𝓥 → has-prop-truncation 𝓥 X
collapsible-has-prop-truncation {𝓤} {X} c = split-truncation (fix-has-split-support' c)
open import UF.PropTrunc
module split-support-and-collapsibility (pe : propositional-truncations-exist) where
open PropositionalTruncation pe
has-split-support : 𝓤 ̇ → 𝓤 ̇
has-split-support X = ∥ X ∥ → X
has-split-support→ : {X : 𝓤 ̇ } → has-split-support X → has-split-support' X
has-split-support→ {𝓤} {X} f = ∥ X ∥ , ∥∥-is-prop , (λ x → ∣ x ∣) , f
has-split-support← : {X : 𝓤 ̇ } → has-split-support' X → has-split-support X
has-split-support← {𝓤} {X} (P , P-is-prop , g , f) = f ∘ ∥∥-rec P-is-prop g
\end{code}
TODO: Are the above two functions mutually inverse and hence we get an
equivalence?
\begin{code}
collapsible-gives-split-support : {X : 𝓤 ̇ }
→ collapsible X
→ has-split-support X
collapsible-gives-split-support {𝓤} {X} (f , κ) s = x
where
g : ∥ X ∥ → fix f
g = ∥∥-rec (fix-is-prop f κ) (to-fix f κ)
x : X
x = from-fix f (g s)
split-support-gives-collapsible : {X : 𝓤 ̇ }
→ has-split-support X
→ collapsible X
split-support-gives-collapsible {𝓤} {X} g = γ
where
f : X → X
f x = g ∣ x ∣
κ : (x y : X) → f x = f y
κ x y = ap g (∥∥-is-prop ∣ x ∣ ∣ y ∣)
γ : collapsible X
γ = f , κ
\end{code}