Martin Escardo \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} module UF.PropTrunc where open import MLTT.Plus-Properties open import MLTT.Spartan open import MLTT.Two-Properties open import UF.Base open import UF.Equiv open import UF.FunExt open import UF.Subsingletons open import UF.Subsingletons-FunExt \end{code} We use the existence of propositional truncations as an assumption. The following type collects the data that constitutes this assumption. \begin{code} record propositional-truncations-exist : π€Ο where field β₯_β₯ : {π€ : Universe} β π€ Μ β π€ Μ β₯β₯-is-prop : {π€ : Universe} {X : π€ Μ } β is-prop β₯ X β₯ β£_β£ : {π€ : Universe} {X : π€ Μ } β X β β₯ X β₯ β₯β₯-rec : {π€ π₯ : Universe} {X : π€ Μ } {P : π₯ Μ } β is-prop P β (X β P) β β₯ X β₯ β P infix 0 β₯_β₯ infix 0 β£_β£ module PropositionalTruncation (pt : propositional-truncations-exist) where open propositional-truncations-exist pt public β₯β₯-induction : {X : π€ Μ } {P : β₯ X β₯ β π₯ Μ } β ((s : β₯ X β₯) β is-prop (P s)) β ((x : X) β P β£ x β£) β (s : β₯ X β₯) β P s β₯β₯-induction {π€} {π₯} {X} {P} i f s = Ο' s where Ο : X β P s Ο x = transport P (β₯β₯-is-prop β£ x β£ s) (f x) Ο' : β₯ X β₯ β P s Ο' = β₯β₯-rec (i s) Ο is-singleton'-is-prop : {X : π€ Μ } β funext π€ π€ β is-prop (is-prop X Γ β₯ X β₯) is-singleton'-is-prop fe = Ξ£-is-prop (being-prop-is-prop fe) (Ξ» _ β β₯β₯-is-prop) the-singletons-are-the-inhabited-propositions : {X : π€ Μ } β is-singleton X β is-prop X Γ β₯ X β₯ the-singletons-are-the-inhabited-propositions {π€} {X} = f , g where f : is-singleton X β is-prop X Γ β₯ X β₯ f (x , Ο) = singletons-are-props (x , Ο) , β£ x β£ g : is-prop X Γ β₯ X β₯ β is-singleton X g (i , s) = β₯β₯-rec i id s , i (β₯β₯-rec i id s) β₯β₯-functor : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β β₯ X β₯ β β₯ Y β₯ β₯β₯-functor f = β₯β₯-rec β₯β₯-is-prop (Ξ» x β β£ f x β£) β₯β₯-recβ : {π€ π₯ : Universe} {X : π€ Μ } {Y : π₯ Μ } {P : π¦ Μ } β is-prop P β (X β Y β P) β β₯ X β₯ β β₯ Y β₯ β P β₯β₯-recβ i f s t = β₯β₯-rec i (Ξ» x β β₯β₯-rec i (f x) t) s β₯β₯-functorβ : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } β (X β Y β Z) β β₯ X β₯ β β₯ Y β₯ β β₯ Z β₯ β₯β₯-functorβ f s t = β₯β₯-rec β₯β₯-is-prop (Ξ» x β β₯β₯-functor (f x) t) s β : {X : π€ Μ } (Y : X β π₯ Μ ) β π€ β π₯ Μ β Y = β₯ Ξ£ Y β₯ β-is-prop : {X : π€ Μ } {Y : X β π₯ Μ } β is-prop (β Y) β-is-prop = β₯β₯-is-prop Exists : {π€ π₯ : Universe} (X : π€ Μ ) (Y : X β π₯ Μ ) β π€ β π₯ Μ Exists X Y = β Y syntax Exists A (Ξ» x β b) = β x κ A , b infixr -1 Exists Natβ : {X : π€ Μ } {A : X β π₯ Μ } {B : X β π¦ Μ } β Nat A B β β A β β B Natβ ΞΆ = β₯β₯-functor (NatΞ£ ΞΆ) _β¨_ : π€ Μ β π₯ Μ β π€ β π₯ Μ P β¨ Q = β₯ P + Q β₯ β¨-is-prop : {P : π€ Μ } {Q : π₯ Μ } β is-prop (P β¨ Q) β¨-is-prop = β₯β₯-is-prop β¨-elim : {P : π€ Μ } {Q : π₯ Μ } {R : π¦ Μ } β is-prop R β (P β R) β (Q β R) β P β¨ Q β R β¨-elim i f g = β₯β₯-rec i (cases f g) β¨-functor : {P : π€ Μ } {Q : π₯ Μ } {R : π¦ Μ } {S : π£ Μ } β (P β R) β (Q β S) β P β¨ Q β R β¨ S β¨-functor f g = β₯β₯-functor (+functor f g) left-fails-gives-right-holds : {P : π€ Μ } {Q : π₯ Μ } β is-prop Q β P β¨ Q β Β¬ P β Q left-fails-gives-right-holds i d u = β₯β₯-rec i (Ξ» d β Left-fails-gives-right-holds d u) d right-fails-gives-left-holds : {P : π€ Μ } {Q : π₯ Μ } β is-prop P β P β¨ Q β Β¬ Q β P right-fails-gives-left-holds i d u = β₯β₯-rec i (Ξ» d β Right-fails-gives-left-holds d u) d pt-gdn : {X : π€ Μ } β β₯ X β₯ β β {π₯} (P : π₯ Μ ) β is-prop P β (X β P) β P pt-gdn {π€} {X} s {π₯} P isp u = β₯β₯-rec isp u s gdn-pt : {X : π€ Μ } β (β {π₯} (P : π₯ Μ ) β is-prop P β (X β P) β P) β β₯ X β₯ gdn-pt {π€} {X} Ο = Ο β₯ X β₯ β₯β₯-is-prop β£_β£ inhabited-is-nonempty : {X : π€ Μ } β β₯ X β₯ β ¬¬ X inhabited-is-nonempty s = pt-gdn s π π-is-prop uninhabited-is-empty : {X : π€ Μ } β Β¬ β₯ X β₯ β Β¬ X uninhabited-is-empty u x = u β£ x β£ empty-is-uninhabited : {X : π€ Μ } β Β¬ X β Β¬ β₯ X β₯ empty-is-uninhabited v = β₯β₯-rec π-is-prop v binary-choice : {X : π€ Μ } {Y : π₯ Μ } β β₯ X β₯ β β₯ Y β₯ β β₯ X Γ Y β₯ binary-choice s t = β₯β₯-rec β₯β₯-is-prop (Ξ» x β β₯β₯-rec β₯β₯-is-prop (Ξ» y β β£ x , y β£) t) s prop-is-equivalent-to-its-truncation : {X : π€ Μ } β is-prop X β β₯ X β₯ β X prop-is-equivalent-to-its-truncation i = logically-equivalent-props-are-equivalent β₯β₯-is-prop i (β₯β₯-rec i id) β£_β£ not-existsβ-implies-forallβ : {X : π€ Μ } (p : X β π) β Β¬ (β x κ X , p x οΌ β) β β (x : X) β p x οΌ β not-existsβ-implies-forallβ p u x = different-from-β-equal-β (not-Ξ£-implies-Ξ -not (u β β£_β£) x) forallβ-implies-not-existsβ : {X : π€ Μ } (p : X β π) β (β (x : X) β p x οΌ β) β Β¬ (β x κ X , p x οΌ β) forallβ-implies-not-existsβ {π€} {X} p Ξ± = β₯β₯-rec π-is-prop h where h : (Ξ£ x κ X , p x οΌ β) β π h (x , r) = zero-is-not-one (r β»ΒΉ β Ξ± x) forallβ-implies-not-existsβ : {X : π€ Μ } (p : X β π) β (β (x : X) β p x οΌ β) β Β¬ (β x κ X , p x οΌ β) forallβ-implies-not-existsβ {π€} {X} p Ξ± = β₯β₯-rec π-is-prop h where h : (Ξ£ x κ X , p x οΌ β) β π h (x , r) = one-is-not-zero (r β»ΒΉ β Ξ± x) \end{code} Added 19/12/2019 by Tom de Jong. The following allows us to use Agda's do-notation with the β₯β₯-monad. Note that the Kleisli laws hold trivially, because β₯ X β₯ is a proposition for any type X. It is quite convenient when dealing with multiple, successive β₯β₯-rec calls. Agda's do-notation is powerful, because it can be combined with pattern matching, i.e. if w κ β₯ fiber f y β₯, then x , p β w is allowed in the do-block. (Note that in Haskell, you would write "return" for our function β£_β£.) \begin{code} _>>=_ : {X : π€ Μ } {Y : π₯ Μ } β β₯ X β₯ β (X β β₯ Y β₯) β β₯ Y β₯ s >>= f = β₯β₯-rec β₯β₯-is-prop f s \end{code} \begin{code} infixr 0 _β¨_ \end{code}