Martin Escardo, 30 April 2020 This ports the structure identity principle examples formulated and proved in https://www.cs.bham.ac.uk/~mhe/HoTT-UF.in-Agda-Lecture-Notes/index.html https://arxiv.org/abs/1911.00580 https://github.com/martinescardo/HoTT-UF.Agda-Lecture-Notes Each example is in a submodule: * ∞-magma * magma * pointed type * pointed-∞-magma * monoid * associative ∞-magma * group * subgroups of an ambient group * ring * slice * generalized metric space * generalized topological space * selection space * contrived example * generalized functor algebra * type-valued preorder * type-valued preorder with- xioms * category We also consider the following, which are not in the above lecture notes: * universe à la Tarski * ∞-bigmagma * ∞-hugemagma \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} module UF.SIP-Examples where open import MLTT.Spartan open import Notation.Order open import UF.Base open import UF.SIP open import UF.Equiv hiding (_≅_) open import UF.Univalence open import UF.EquivalenceExamples open import UF.Subsingletons open import UF.Embeddings open import UF.Subsingletons-FunExt open import UF.FunExt open import UF.UA-FunExt open import UF.Retracts open import UF.Yoneda module ∞-magma {𝓤 : Universe} where open sip ∞-magma-structure : 𝓤 ̇ → 𝓤 ̇ ∞-magma-structure X = X → X → X ∞-Magma : 𝓤 ⁺ ̇ ∞-Magma = Σ X ꞉ 𝓤 ̇ , ∞-magma-structure X sns-data : SNS ∞-magma-structure 𝓤 sns-data = (ι , ρ , θ) where ι : (A B : ∞-Magma) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ̇ ι (X , _·_) (Y , _*_) (f , _) = (λ x x' → f (x · x')) = (λ x x' → f x * f x') ρ : (A : ∞-Magma) → ι A A (≃-refl ⟨ A ⟩) ρ (X , _·_) = 𝓻𝓮𝒻𝓵 _·_ h : {X : 𝓤 ̇ } {_·_ _*_ : ∞-magma-structure X} → canonical-map ι ρ _·_ _*_ ∼ -id (_·_ = _*_) h (refl {_·_}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 _·_) θ : {X : 𝓤 ̇ } (_·_ _*_ : ∞-magma-structure X) → is-equiv (canonical-map ι ρ _·_ _*_) θ _·_ _*_ = equiv-closed-under-∼ _ _ (id-is-equiv (_·_ = _*_)) h _≅_ : ∞-Magma → ∞-Magma → 𝓤 ̇ (X , _·_) ≅ (Y , _*_) = Σ f ꞉ (X → Y) , is-equiv f × ((λ x x' → f (x · x')) = (λ x x' → f x * f x')) characterization-of-∞-Magma-= : is-univalent 𝓤 → (A B : ∞-Magma) → (A = B) ≃ (A ≅ B) characterization-of-∞-Magma-= ua = characterization-of-= ua sns-data characterization-of-characterization-of-∞-Magma-= : (ua : is-univalent 𝓤) (A : ∞-Magma) → ⌜ characterization-of-∞-Magma-= ua A A ⌝ (𝓻𝓮𝒻𝓵 A) = (-id ⟨ A ⟩ , id-is-equiv ⟨ A ⟩ , refl) characterization-of-characterization-of-∞-Magma-= ua A = refl module magma {𝓤 : Universe} where open sip-with-axioms Magma : 𝓤 ⁺ ̇ Magma = Σ X ꞉ 𝓤 ̇ , (X → X → X) × is-set X _≅_ : Magma → Magma → 𝓤 ̇ (X , _·_ , _) ≅ (Y , _*_ , _) = Σ f ꞉ (X → Y), is-equiv f × ((λ x x' → f (x · x')) = (λ x x' → f x * f x')) characterization-of-Magma-= : is-univalent 𝓤 → (A B : Magma ) → (A = B) ≃ (A ≅ B) characterization-of-Magma-= ua = characterization-of-=-with-axioms ua ∞-magma.sns-data (λ X s → is-set X) (λ X s → being-set-is-prop (univalence-gives-funext ua)) module pointed-type {𝓤 : Universe} where open sip Pointed : 𝓤 ̇ → 𝓤 ̇ Pointed X = X sns-data : SNS Pointed 𝓤 sns-data = (ι , ρ , θ) where ι : (A B : Σ Pointed) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ̇ ι (X , x₀) (Y , y₀) (f , _) = (f x₀ = y₀) ρ : (A : Σ Pointed) → ι A A (≃-refl ⟨ A ⟩) ρ (X , x₀) = 𝓻𝓮𝒻𝓵 x₀ θ : {X : 𝓤 ̇ } (x₀ x₁ : Pointed X) → is-equiv (canonical-map ι ρ x₀ x₁) θ x₀ x₁ = equiv-closed-under-∼ _ _ (id-is-equiv (x₀ = x₁)) h where h : canonical-map ι ρ x₀ x₁ ∼ -id (x₀ = x₁) h (refl {x₀}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 x₀) _≅_ : Σ Pointed → Σ Pointed → 𝓤 ̇ (X , x₀) ≅ (Y , y₀) = Σ f ꞉ (X → Y), is-equiv f × (f x₀ = y₀) characterization-of-pointed-type-= : is-univalent 𝓤 → (A B : Σ Pointed) → (A = B) ≃ (A ≅ B) characterization-of-pointed-type-= ua = characterization-of-= ua sns-data module pointed-∞-magma {𝓤 : Universe} where open sip-join ∞-Magma· : 𝓤 ⁺ ̇ ∞-Magma· = Σ X ꞉ 𝓤 ̇ , (X → X → X) × X _≅_ : ∞-Magma· → ∞-Magma· → 𝓤 ̇ (X , _·_ , x₀) ≅ (Y , _*_ , y₀) = Σ f ꞉ (X → Y), is-equiv f × ((λ x x' → f (x · x')) = (λ x x' → f x * f x')) × (f x₀ = y₀) characterization-of-pointed-magma-= : is-univalent 𝓤 → (A B : ∞-Magma·) → (A = B) ≃ (A ≅ B) characterization-of-pointed-magma-= ua = characterization-of-join-= ua ∞-magma.sns-data pointed-type.sns-data module monoid {𝓤 : Universe} where open sip open sip-join open sip-with-axioms monoid-structure : 𝓤 ̇ → 𝓤 ̇ monoid-structure X = (X → X → X) × X monoid-axioms : (X : 𝓤 ̇ ) → monoid-structure X → 𝓤 ̇ monoid-axioms X (_·_ , e) = is-set X × left-neutral e _·_ × right-neutral e _·_ × associative _·_ Monoid : 𝓤 ⁺ ̇ Monoid = Σ X ꞉ 𝓤 ̇ , Σ s ꞉ monoid-structure X , monoid-axioms X s monoid-axioms-is-prop : funext 𝓤 𝓤 → (X : 𝓤 ̇ ) (s : monoid-structure X) → is-prop (monoid-axioms X s) monoid-axioms-is-prop fe X (_·_ , e) s = γ s where i : is-set X i = pr₁ s γ : is-prop (monoid-axioms X (_·_ , e)) γ = ×-is-prop (being-set-is-prop fe) (×-is-prop (Π-is-prop fe (λ x → i {e · x} {x})) (×-is-prop (Π-is-prop fe (λ x → i {x · e} {x})) (Π-is-prop fe (λ x → Π-is-prop fe (λ y → Π-is-prop fe (λ z → i {(x · y) · z} {x · (y · z)})))))) sns-data : funext 𝓤 𝓤 → SNS (λ X → Σ s ꞉ monoid-structure X , monoid-axioms X s) 𝓤 sns-data fe = add-axioms monoid-axioms (monoid-axioms-is-prop fe) (join ∞-magma.sns-data pointed-type.sns-data) _≅_ : Monoid → Monoid → 𝓤 ̇ (X , (_·_ , d) , _) ≅ (Y , (_*_ , e) , _) = Σ f ꞉ (X → Y), is-equiv f × ((λ x x' → f (x · x')) = (λ x x' → f x * f x')) × (f d = e) characterization-of-monoid-= : is-univalent 𝓤 → (A B : Monoid) → (A = B) ≃ (A ≅ B) characterization-of-monoid-= ua = characterization-of-= ua (sns-data (univalence-gives-funext ua)) module associative-∞-magma {𝓤 : Universe} (ua : is-univalent 𝓤) where abstract fe : funext 𝓤 𝓤 fe = univalence-gives-funext ua ∞-amagma-structure : 𝓤 ̇ → 𝓤 ̇ ∞-amagma-structure X = Σ _·_ ꞉ (X → X → X), (associative _·_) ∞-aMagma : 𝓤 ⁺ ̇ ∞-aMagma = Σ X ꞉ 𝓤 ̇ , ∞-amagma-structure X homomorphic : {X Y : 𝓤 ̇ } → (X → X → X) → (Y → Y → Y) → (X → Y) → 𝓤 ̇ homomorphic _·_ _*_ f = (λ x y → f (x · y)) = (λ x y → f x * f y) respect-assoc : {X A : 𝓤 ̇ } (_·_ : X → X → X) (_*_ : A → A → A) → associative _·_ → associative _*_ → (f : X → A) → homomorphic _·_ _*_ f → 𝓤 ̇ respect-assoc _·_ _*_ α β f h = fα = βf where l = λ x y z → f ((x · y) · z) =⟨ ap (λ - → - (x · y) z) h ⟩ f (x · y) * f z =⟨ ap (λ - → - x y * f z) h ⟩ (f x * f y) * f z ∎ r = λ x y z → f (x · (y · z)) =⟨ ap (λ - → - x (y · z)) h ⟩ f x * f (y · z) =⟨ ap (λ - → f x * - y z) h ⟩ f x * (f y * f z) ∎ fα βf : ∀ x y z → (f x * f y) * f z = f x * (f y * f z) fα x y z = (l x y z)⁻¹ ∙ ap f (α x y z) ∙ r x y z βf x y z = β (f x) (f y) (f z) remark : {X : 𝓤 ̇ } (_·_ : X → X → X) (α β : associative _·_ ) → respect-assoc _·_ _·_ α β id (𝓻𝓮𝒻𝓵 _·_) = ((λ x y z → 𝓻𝓮𝒻𝓵 ((x · y) · z) ∙ ap id (α x y z)) = β) remark _·_ α β = refl open sip hiding (homomorphic) sns-data : SNS ∞-amagma-structure 𝓤 sns-data = (ι , ρ , θ) where ι : (𝓧 𝓐 : ∞-aMagma) → ⟨ 𝓧 ⟩ ≃ ⟨ 𝓐 ⟩ → 𝓤 ̇ ι (X , _·_ , α) (A , _*_ , β) (f , i) = Σ h ꞉ homomorphic _·_ _*_ f , respect-assoc _·_ _*_ α β f h ρ : (𝓧 : ∞-aMagma) → ι 𝓧 𝓧 (≃-refl ⟨ 𝓧 ⟩) ρ (X , _·_ , α) = h , p where h : homomorphic _·_ _·_ id h = 𝓻𝓮𝒻𝓵 _·_ q : ∀ x y z → 𝓻𝓮𝒻𝓵 ((x · y) · z) ∙ ap id (α x y z) = α x y z q x y z = refl-left-neutral ∙ ap-id-is-id (α x y z) p : (λ x y z → 𝓻𝓮𝒻𝓵 ((x · y) · z) ∙ ap id (α x y z)) = α p = dfunext fe (λ x → dfunext fe (λ y → dfunext fe (λ z → q x y z))) u : (X : 𝓤 ̇ ) → ∀ s → ∃! t ꞉ ∞-amagma-structure X , ι (X , s) (X , t) (≃-refl X) u X (_·_ , α) = c , φ where c : Σ t ꞉ ∞-amagma-structure X , ι (X , _·_ , α) (X , t) (≃-refl X) c = (_·_ , α) , ρ (X , _·_ , α) φ : (σ : Σ t ꞉ ∞-amagma-structure X , ι (X , _·_ , α) (X , t) (≃-refl X)) → c = σ φ ((_·_ , β) , refl {_·_} , k) = γ where a : associative _·_ a x y z = 𝓻𝓮𝒻𝓵 ((x · y) · z) ∙ ap id (α x y z) g : singleton-type a → Σ t ꞉ ∞-amagma-structure X , ι (X , _·_ , α) (X , t) (≃-refl X) g (β , k) = (_·_ , β) , (𝓻𝓮𝒻𝓵 _·_) , k i : is-prop (singleton-type a) i = singletons-are-props (singleton-types-are-singletons a) q : α , pr₂ (ρ (X , _·_ , α)) = β , k q = i _ _ γ : c = (_·_ , β) , 𝓻𝓮𝒻𝓵 _·_ , k γ = ap g q θ : {X : 𝓤 ̇ } (s t : ∞-amagma-structure X) → is-equiv (canonical-map ι ρ s t) θ {X} s = Yoneda-Theorem-forth s (canonical-map ι ρ s) (u X s) _≅_ : ∞-aMagma → ∞-aMagma → 𝓤 ̇ (X , _·_ , α) ≅ (Y , _*_ , β) = Σ f ꞉ (X → Y) , is-equiv f × (Σ h ꞉ homomorphic _·_ _*_ f , respect-assoc _·_ _*_ α β f h) characterization-of-∞-aMagma-= : (A B : ∞-aMagma) → (A = B) ≃ (A ≅ B) characterization-of-∞-aMagma-= = characterization-of-= ua sns-data module group {𝓤 : Universe} where open sip open sip-with-axioms open monoid {𝓤} hiding (sns-data ; _≅_) group-structure : 𝓤 ̇ → 𝓤 ̇ group-structure X = Σ s ꞉ monoid-structure X , monoid-axioms X s group-axiom : (X : 𝓤 ̇ ) → monoid-structure X → 𝓤 ̇ group-axiom X (_·_ , e) = (x : X) → Σ x' ꞉ X , (x · x' = e) × (x' · x = e) Group : 𝓤 ⁺ ̇ Group = Σ X ꞉ 𝓤 ̇ , Σ ((_·_ , e) , a) ꞉ group-structure X , group-axiom X (_·_ , e) inv-lemma : (X : 𝓤 ̇ ) (_·_ : X → X → X) (e : X) → monoid-axioms X (_·_ , e) → (x y z : X) → (y · x) = e → (x · z) = e → y = z inv-lemma X _·_ e (s , l , r , a) x y z q p = y =⟨ (r y)⁻¹ ⟩ (y · e) =⟨ ap (y ·_) (p ⁻¹) ⟩ (y · (x · z)) =⟨ (a y x z)⁻¹ ⟩ ((y · x) · z) =⟨ ap (_· z) q ⟩ (e · z) =⟨ l z ⟩ z ∎ group-axiom-is-prop : funext 𝓤 𝓤 → (X : 𝓤 ̇ ) → (s : group-structure X) → is-prop (group-axiom X (pr₁ s)) group-axiom-is-prop fe X ((_·_ , e) , (s , l , r , a)) = γ where i : (x : X) → is-prop (Σ x' ꞉ X , (x · x' = e) × (x' · x = e)) i x (y , _ , q) (z , p , _) = u where t : y = z t = inv-lemma X _·_ e (s , l , r , a) x y z q p u : (y , _ , q) = (z , p , _) u = to-subtype-= (λ x' → ×-is-prop s s) t γ : is-prop (group-axiom X (_·_ , e)) γ = Π-is-prop fe i sns-data : funext 𝓤 𝓤 → SNS (λ X → Σ s ꞉ group-structure X , group-axiom X (pr₁ s)) 𝓤 sns-data fe = add-axioms (λ X s → group-axiom X (pr₁ s)) (group-axiom-is-prop fe) (monoid.sns-data fe) _≅_ : Group → Group → 𝓤 ̇ (X , ((_·_ , d) , _) , _) ≅ (Y , ((_*_ , e) , _) , _) = Σ f ꞉ (X → Y), is-equiv f × ((λ x x' → f (x · x')) = (λ x x' → f x * f x')) × (f d = e) characterization-of-group-= : is-univalent 𝓤 → (A B : Group) → (A = B) ≃ (A ≅ B) characterization-of-group-= ua = characterization-of-= ua (sns-data (univalence-gives-funext ua)) _≅'_ : Group → Group → 𝓤 ̇ (X , ((_·_ , d) , _) , _) ≅' (Y , ((_*_ , e) , _) , _) = Σ f ꞉ (X → Y), is-equiv f × ((λ x x' → f (x · x')) = (λ x x' → f x * f x')) group-structure-of : (G : Group) → group-structure ⟨ G ⟩ group-structure-of (X , ((_·_ , e) , i , l , r , a) , γ) = (_·_ , e) , i , l , r , a monoid-structure-of : (G : Group) → monoid-structure ⟨ G ⟩ monoid-structure-of (X , ((_·_ , e) , i , l , r , a) , γ) = (_·_ , e) monoid-axioms-of : (G : Group) → monoid-axioms ⟨ G ⟩ (monoid-structure-of G) monoid-axioms-of (X , ((_·_ , e) , i , l , r , a) , γ) = i , l , r , a multiplication : (G : Group) → ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ multiplication (X , ((_·_ , e) , i , l , r , a) , γ) = _·_ syntax multiplication G x y = x ·⟨ G ⟩ y unit : (G : Group) → ⟨ G ⟩ unit (X , ((_·_ , e) , i , l , r , a) , γ) = e group-is-set : (G : Group) → is-set ⟨ G ⟩ group-is-set (X , ((_·_ , e) , i , l , r , a) , γ) = i unit-left : (G : Group) (x : ⟨ G ⟩) → unit G ·⟨ G ⟩ x = x unit-left (X , ((_·_ , e) , i , l , r , a) , γ) x = l x unit-right : (G : Group) (x : ⟨ G ⟩) → x ·⟨ G ⟩ unit G = x unit-right (X , ((_·_ , e) , i , l , r , a) , γ) x = r x assoc : (G : Group) (x y z : ⟨ G ⟩) → (x ·⟨ G ⟩ y) ·⟨ G ⟩ z = x ·⟨ G ⟩ (y ·⟨ G ⟩ z) assoc (X , ((_·_ , e) , i , l , r , a) , γ) = a inv : (G : Group) → ⟨ G ⟩ → ⟨ G ⟩ inv (X , ((_·_ , e) , i , l , r , a) , γ) x = pr₁ (γ x) inv-left : (G : Group) (x : ⟨ G ⟩) → inv G x ·⟨ G ⟩ x = unit G inv-left (X , ((_·_ , e) , i , l , r , a) , γ) x = pr₂ (pr₂ (γ x)) inv-right : (G : Group) (x : ⟨ G ⟩) → x ·⟨ G ⟩ inv G x = unit G inv-right (X , ((_·_ , e) , i , l , r , a) , γ) x = pr₁ (pr₂ (γ x)) preserves-multiplication : (G H : Group) → (⟨ G ⟩ → ⟨ H ⟩) → 𝓤 ̇ preserves-multiplication G H f = (λ (x y : ⟨ G ⟩) → f (x ·⟨ G ⟩ y)) = (λ (x y : ⟨ G ⟩) → f x ·⟨ H ⟩ f y) preserves-unit : (G H : Group) → (⟨ G ⟩ → ⟨ H ⟩) → 𝓤 ̇ preserves-unit G H f = f (unit G) = unit H idempotent-is-unit : (G : Group) (x : ⟨ G ⟩) → x ·⟨ G ⟩ x = x → x = unit G idempotent-is-unit G x p = γ where x' = inv G x γ = x =⟨ (unit-left G x)⁻¹ ⟩ unit G ·⟨ G ⟩ x =⟨ (ap (λ - → - ·⟨ G ⟩ x) (inv-left G x))⁻¹ ⟩ (x' ·⟨ G ⟩ x) ·⟨ G ⟩ x =⟨ assoc G x' x x ⟩ x' ·⟨ G ⟩ (x ·⟨ G ⟩ x) =⟨ ap (λ - → x' ·⟨ G ⟩ -) p ⟩ x' ·⟨ G ⟩ x =⟨ inv-left G x ⟩ unit G ∎ unit-preservation-lemma : (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩) → preserves-multiplication G H f → preserves-unit G H f unit-preservation-lemma G H f m = idempotent-is-unit H e p where e = f (unit G) p = e ·⟨ H ⟩ e =⟨ ap (λ - → - (unit G) (unit G)) (m ⁻¹) ⟩ f (unit G ·⟨ G ⟩ unit G) =⟨ ap f (unit-left G (unit G)) ⟩ e ∎ inv-Lemma : (G : Group) (x y z : ⟨ G ⟩) → (y ·⟨ G ⟩ x) = unit G → (x ·⟨ G ⟩ z) = unit G → y = z inv-Lemma G = inv-lemma ⟨ G ⟩ (multiplication G) (unit G) (monoid-axioms-of G) one-left-inv : (G : Group) (x x' : ⟨ G ⟩) → (x' ·⟨ G ⟩ x) = unit G → x' = inv G x one-left-inv G x x' p = inv-Lemma G x x' (inv G x) p (inv-right G x) one-right-inv : (G : Group) (x x' : ⟨ G ⟩) → (x ·⟨ G ⟩ x') = unit G → x' = inv G x one-right-inv G x x' p = (inv-Lemma G x (inv G x) x' (inv-left G x) p)⁻¹ preserves-inv : (G H : Group) → (⟨ G ⟩ → ⟨ H ⟩) → 𝓤 ̇ preserves-inv G H f = (x : ⟨ G ⟩) → f (inv G x) = inv H (f x) inv-preservation-lemma : (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩) → preserves-multiplication G H f → preserves-inv G H f inv-preservation-lemma G H f m x = γ where p = f (inv G x) ·⟨ H ⟩ f x =⟨ (ap (λ - → - (inv G x) x) m)⁻¹ ⟩ f (inv G x ·⟨ G ⟩ x) =⟨ ap f (inv-left G x) ⟩ f (unit G) =⟨ unit-preservation-lemma G H f m ⟩ unit H ∎ γ : f (inv G x) = inv H (f x) γ = one-left-inv H (f x) (f (inv G x)) p is-homomorphism : (G H : Group) → (⟨ G ⟩ → ⟨ H ⟩) → 𝓤 ̇ is-homomorphism G H f = preserves-multiplication G H f × preserves-unit G H f preservation-of-mult-is-prop : funext 𝓤 𝓤 → (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩) → is-prop (preserves-multiplication G H f) preservation-of-mult-is-prop fe G H f = j where j : is-prop (preserves-multiplication G H f) j = Π-is-set fe (λ _ → Π-is-set fe (λ _ → group-is-set H)) being-homomorphism-is-prop : funext 𝓤 𝓤 → (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩) → is-prop (is-homomorphism G H f) being-homomorphism-is-prop fe G H f = i where i : is-prop (is-homomorphism G H f) i = ×-is-prop (preservation-of-mult-is-prop fe G H f) (group-is-set H) notions-of-homomorphism-agree : funext 𝓤 𝓤 → (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩) → is-homomorphism G H f ≃ preserves-multiplication G H f notions-of-homomorphism-agree fe G H f = γ where α : is-homomorphism G H f → preserves-multiplication G H f α = pr₁ β : preserves-multiplication G H f → is-homomorphism G H f β m = m , unit-preservation-lemma G H f m γ : is-homomorphism G H f ≃ preserves-multiplication G H f γ = logically-equivalent-props-are-equivalent (being-homomorphism-is-prop fe G H f) (preservation-of-mult-is-prop fe G H f) α β ≅-agreement : funext 𝓤 𝓤 → (G H : Group) → (G ≅ H) ≃ (G ≅' H) ≅-agreement fe G H = Σ-cong (λ f → Σ-cong (λ _ → notions-of-homomorphism-agree fe G H f)) forget-unit-preservation : (G H : Group) → (G ≅ H) → (G ≅' H) forget-unit-preservation G H (f , e , m , _) = f , e , m NB : (fe : funext 𝓤 𝓤) → (G H : Group) → ⌜ ≅-agreement fe G H ⌝ = forget-unit-preservation G H NB fe G H = refl forget-unit-preservation-is-equiv : funext 𝓤 𝓤 → (G H : Group) → is-equiv (forget-unit-preservation G H) forget-unit-preservation-is-equiv fe G H = ⌜⌝-is-equiv (≅-agreement fe G H) module subgroup (𝓤 : Universe) (ua : Univalence) where fe : ∀ {𝓥} {𝓦} → funext 𝓥 𝓦 fe {𝓥} {𝓦} = univalence-gives-funext' 𝓥 𝓦 (ua 𝓥) (ua (𝓥 ⊔ 𝓦)) open sip open monoid {𝓤} hiding (sns-data ; _≅_) open group {𝓤} open import UF.Powerset open import UF.Classifiers module ambient (G : Group) where _·_ : ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ x · y = x ·⟨ G ⟩ y infixl 42 _·_ group-closed : (⟨ G ⟩ → 𝓥 ̇ ) → 𝓤 ⊔ 𝓥 ̇ group-closed 𝓐 = 𝓐 (unit G) × ((x y : ⟨ G ⟩) → 𝓐 x → 𝓐 y → 𝓐 (x · y)) × ((x : ⟨ G ⟩) → 𝓐 x → 𝓐 (inv G x)) Subgroups : 𝓤 ⁺ ̇ Subgroups = Σ A ꞉ 𝓟 ⟨ G ⟩ , group-closed (_∈ A) ⟪_⟫ : Subgroups → 𝓟 ⟨ G ⟩ ⟪ A , u , c , ι ⟫ = A being-group-closed-subset-is-prop : (A : 𝓟 ⟨ G ⟩) → is-prop (group-closed (_∈ A)) being-group-closed-subset-is-prop A = ×-is-prop (∈-is-prop A (unit G)) (×-is-prop (Π-is-prop fe (λ x → Π-is-prop fe (λ y → Π-is-prop fe (λ _ → Π-is-prop fe (λ _ → ∈-is-prop A (x · y)))))) (Π-is-prop fe (λ x → Π-is-prop fe (λ _ → ∈-is-prop A (inv G x))))) ⟪⟫-is-embedding : is-embedding ⟪_⟫ ⟪⟫-is-embedding = pr₁-is-embedding being-group-closed-subset-is-prop ap-⟪⟫ : (S T : Subgroups) → S = T → ⟪ S ⟫ = ⟪ T ⟫ ap-⟪⟫ S T = ap ⟪_⟫ ap-⟪⟫-is-equiv : (S T : Subgroups) → is-equiv (ap-⟪⟫ S T) ap-⟪⟫-is-equiv = embedding-embedding' ⟪_⟫ ⟪⟫-is-embedding subgroups-form-a-set : is-set Subgroups subgroups-form-a-set {S} {T} = equiv-to-prop (ap-⟪⟫ S T , ap-⟪⟫-is-equiv S T) (𝓟-is-set ua) subgroup-equality : (S T : Subgroups) → (S = T) ≃ ((x : ⟨ G ⟩) → (x ∈ ⟪ S ⟫) ⇔ (x ∈ ⟪ T ⟫)) subgroup-equality S T = γ where f : S = T → (x : ⟨ G ⟩) → x ∈ ⟪ S ⟫ ⇔ x ∈ ⟪ T ⟫ f p x = transport (λ - → x ∈ ⟪ - ⟫) p , transport (λ - → x ∈ ⟪ - ⟫) (p ⁻¹) h : ((x : ⟨ G ⟩) → x ∈ ⟪ S ⟫ ⇔ x ∈ ⟪ T ⟫) → ⟪ S ⟫ = ⟪ T ⟫ h φ = subset-extensionality' ua α β where α : ⟪ S ⟫ ⊆ ⟪ T ⟫ α x = lr-implication (φ x) β : ⟪ T ⟫ ⊆ ⟪ S ⟫ β x = rl-implication (φ x) g : ((x : ⟨ G ⟩) → x ∈ ⟪ S ⟫ ⇔ x ∈ ⟪ T ⟫) → S = T g = inverse (ap-⟪⟫ S T) (ap-⟪⟫-is-equiv S T) ∘ h γ : (S = T) ≃ ((x : ⟨ G ⟩) → x ∈ ⟪ S ⟫ ⇔ x ∈ ⟪ T ⟫) γ = logically-equivalent-props-are-equivalent subgroups-form-a-set (Π-is-prop fe (λ x → ×-is-prop (Π-is-prop fe (λ _ → ∈-is-prop ⟪ T ⟫ x)) (Π-is-prop fe (λ _ → ∈-is-prop ⟪ S ⟫ x)))) f g T : 𝓤 ̇ → 𝓤 ̇ T X = Σ ((_·_ , e) , a) ꞉ group-structure X , group-axiom X (_·_ , e) module _ {X : 𝓤 ̇ } (h : X → ⟨ G ⟩) (e : is-embedding h) where private h-lc : left-cancellable h h-lc = embeddings-are-lc h e having-group-closed-fiber-is-prop : is-prop (group-closed (fiber h)) having-group-closed-fiber-is-prop = being-group-closed-subset-is-prop (λ x → (fiber h x , e x)) at-most-one-homomorphic-structure : is-prop (Σ τ ꞉ T X , is-homomorphism (X , τ) G h) at-most-one-homomorphic-structure ((((_*_ , unitH) , maxioms) , gaxiom) , (pmult , punit)) ((((_*'_ , unitH') , maxioms') , gaxiom') , (pmult' , punit')) = γ where τ τ' : T X τ = ((_*_ , unitH) , maxioms) , gaxiom τ' = ((_*'_ , unitH') , maxioms') , gaxiom' i : is-homomorphism (X , τ) G h i = (pmult , punit) i' : is-homomorphism (X , τ') G h i' = (pmult' , punit') p : _*_ = _*'_ p = dfunext fe (λ x → dfunext fe (λ y → h-lc (h (x * y) =⟨ ap (λ - → - x y) pmult ⟩ h x · h y =⟨ (ap (λ - → - x y) pmult')⁻¹ ⟩ h (x *' y) ∎))) q : unitH = unitH' q = h-lc (h unitH =⟨ punit ⟩ unit G =⟨ punit' ⁻¹ ⟩ h unitH' ∎) r : (_*_ , unitH) = (_*'_ , unitH') r = to-×-= p q δ : τ = τ' δ = to-subtype-= (group-axiom-is-prop fe X) (to-subtype-= (monoid-axioms-is-prop fe X) r) γ : (τ , i) = (τ' , i') γ = to-subtype-= (λ τ → being-homomorphism-is-prop fe (X , τ) G h) δ group-closed-fiber-gives-homomorphic-structure : funext 𝓤 𝓤 → group-closed (fiber h) → (Σ τ ꞉ T X , is-homomorphism (X , τ) G h) group-closed-fiber-gives-homomorphic-structure fe (unitc , mulc , invc) = τ , i where φ : (x : X) → fiber h (h x) φ x = (x , 𝓻𝓮𝒻𝓵 (h x)) unitH : X unitH = fiber-point unitc _*_ : X → X → X x * y = fiber-point (mulc (h x) (h y) (φ x) (φ y)) invH : X → X invH x = fiber-point (invc (h x) (φ x)) pmul : (x y : X) → h (x * y) = h x · h y pmul x y = fiber-identification (mulc (h x) (h y) (φ x) (φ y)) punit : h unitH = unit G punit = fiber-identification unitc pinv : (x : X) → h (invH x) = inv G (h x) pinv x = fiber-identification (invc (h x) (φ x)) unitH-left : (x : X) → unitH * x = x unitH-left x = h-lc (h (unitH * x) =⟨ pmul unitH x ⟩ h unitH · h x =⟨ ap (_· h x) punit ⟩ unit G · h x =⟨ unit-left G (h x) ⟩ h x ∎) unitH-right : (x : X) → x * unitH = x unitH-right x = h-lc (h (x * unitH) =⟨ pmul x unitH ⟩ h x · h unitH =⟨ ap (h x ·_) punit ⟩ h x · unit G =⟨ unit-right G (h x) ⟩ h x ∎) assocH : (x y z : X) → ((x * y) * z) = (x * (y * z)) assocH x y z = h-lc (h ((x * y) * z) =⟨ pmul (x * y) z ⟩ h (x * y) · h z =⟨ ap (_· h z) (pmul x y) ⟩ (h x · h y) · h z =⟨ assoc G (h x) (h y) (h z) ⟩ h x · (h y · h z) =⟨ (ap (h x ·_) (pmul y z))⁻¹ ⟩ h x · h (y * z) =⟨ (pmul x (y * z))⁻¹ ⟩ h (x * (y * z)) ∎) group-axiomH : (x : X) → Σ x' ꞉ X , (x * x' = unitH) × (x' * x = unitH) group-axiomH x = invH x , h-lc (h (x * invH x) =⟨ pmul x (invH x) ⟩ h x · h (invH x) =⟨ ap (h x ·_) (pinv x) ⟩ h x · inv G (h x) =⟨ inv-right G (h x) ⟩ unit G =⟨ punit ⁻¹ ⟩ h unitH ∎), h-lc ((h (invH x * x) =⟨ pmul (invH x) x ⟩ h (invH x) · h x =⟨ ap (_· h x) (pinv x) ⟩ inv G (h x) · h x =⟨ inv-left G (h x) ⟩ unit G =⟨ punit ⁻¹ ⟩ h unitH ∎)) j : is-set X j = subtypes-of-sets-are-sets h h-lc (group-is-set G) τ : T X τ = ((_*_ , unitH) , (j , unitH-left , unitH-right , assocH)) , group-axiomH i : is-homomorphism (X , τ) G h i = dfunext fe (λ x → dfunext fe (pmul x)) , punit homomorphic-structure-gives-group-closed-fiber : (Σ τ ꞉ T X , is-homomorphism (X , τ) G h) → group-closed (fiber h) homomorphic-structure-gives-group-closed-fiber ((((_*_ , unitH) , maxioms) , gaxiom) , (pmult , punit)) = (unitc , mulc , invc) where H : Group H = X , ((_*_ , unitH) , maxioms) , gaxiom unitc : fiber h (unit G) unitc = unitH , punit mulc : ((x y : ⟨ G ⟩) → fiber h x → fiber h y → fiber h (x · y)) mulc x y (a , p) (b , q) = (a * b) , (h (a * b) =⟨ ap (λ - → - a b) pmult ⟩ h a · h b =⟨ ap₂ (λ - -' → - · -') p q ⟩ x · y ∎) invc : ((x : ⟨ G ⟩) → fiber h x → fiber h (inv G x)) invc x (a , p) = inv H a , (h (inv H a) =⟨ inv-preservation-lemma H G h pmult a ⟩ inv G (h a) =⟨ ap (inv G) p ⟩ inv G x ∎) fiber-structure-lemma : funext 𝓤 𝓤 → group-closed (fiber h) ≃ (Σ τ ꞉ T X , is-homomorphism (X , τ) G h) fiber-structure-lemma fe = logically-equivalent-props-are-equivalent having-group-closed-fiber-is-prop at-most-one-homomorphic-structure (group-closed-fiber-gives-homomorphic-structure fe) homomorphic-structure-gives-group-closed-fiber characterization-of-the-type-of-subgroups : Subgroups ≃ (Σ H ꞉ Group , Σ h ꞉ (⟨ H ⟩ → ⟨ G ⟩) , is-embedding h × is-homomorphism H G h) characterization-of-the-type-of-subgroups = Subgroups ≃⟨ i ⟩ (Σ A ꞉ 𝓟 ⟨ G ⟩ , group-closed (_∈ A)) ≃⟨ ii ⟩ (Σ (X , h , e) ꞉ Subtypes ⟨ G ⟩ , group-closed (fiber h)) ≃⟨ iii ⟩ (Σ X ꞉ 𝓤 ̇ , Σ (h , e) ꞉ X ↪ ⟨ G ⟩ , group-closed (fiber h)) ≃⟨ iv ⟩ (Σ X ꞉ 𝓤 ̇ , Σ (h , e) ꞉ X ↪ ⟨ G ⟩ , Σ τ ꞉ T X , is-homomorphism (X , τ) G h) ≃⟨ v ⟩ (Σ X ꞉ 𝓤 ̇ , Σ h ꞉ (X → ⟨ G ⟩) , Σ e ꞉ is-embedding h , Σ τ ꞉ T X , is-homomorphism (X , τ) G h) ≃⟨ vi ⟩ (Σ X ꞉ 𝓤 ̇ , Σ h ꞉ (X → ⟨ G ⟩) , Σ τ ꞉ T X , Σ e ꞉ is-embedding h , is-homomorphism (X , τ) G h) ≃⟨ vii ⟩ (Σ X ꞉ 𝓤 ̇ , Σ τ ꞉ T X , Σ h ꞉ (X → ⟨ G ⟩) , is-embedding h × is-homomorphism (X , τ) G h) ≃⟨ viii ⟩ (Σ H ꞉ Group , Σ h ꞉ (⟨ H ⟩ → ⟨ G ⟩) , is-embedding h × is-homomorphism H G h) ■ where open special-classifier-single-universe 𝓤 φ : Subtypes ⟨ G ⟩ → 𝓟 ⟨ G ⟩ φ = χ-special is-prop ⟨ G ⟩ j : is-equiv φ j = χ-special-is-equiv (ua 𝓤) fe is-prop ⟨ G ⟩ i = ≃-refl Subgroups ii = ≃-sym (Σ-change-of-variable (λ (A : 𝓟 ⟨ G ⟩) → group-closed (_∈ A)) φ j) iii = Σ-assoc iv = Σ-cong (λ X → Σ-cong (λ (h , e) → fiber-structure-lemma h e fe)) v = Σ-cong (λ X → Σ-assoc) vi = Σ-cong (λ X → Σ-cong (λ h → Σ-flip)) vii = Σ-cong (λ X → Σ-flip) viii = ≃-sym Σ-assoc induced-group : Subgroups → Group induced-group S = pr₁ (⌜ characterization-of-the-type-of-subgroups ⌝ S) module ring {𝓤 : Universe} (ua : Univalence) where open sip hiding (⟨_⟩) open sip-with-axioms open sip-join fe : ∀ {𝓥} {𝓦} → funext 𝓥 𝓦 fe {𝓥} {𝓦} = univalence-gives-funext' 𝓥 𝓦 (ua 𝓥) (ua (𝓥 ⊔ 𝓦)) rng-structure : 𝓤 ̇ → 𝓤 ̇ rng-structure X = (X → X → X) × (X → X → X) rng-axioms : (R : 𝓤 ̇ ) → rng-structure R → 𝓤 ̇ rng-axioms R (_+_ , _·_) = I × II × III × IV × V × VI × VII where I = is-set R II = (x y z : R) → (x + y) + z = x + (y + z) III = (x y : R) → x + y = y + x IV = Σ O ꞉ R , ((x : R) → x + O = x) × ((x : R) → Σ x' ꞉ R , x + x' = O) V = (x y z : R) → (x · y) · z = x · (y · z) VI = (x y z : R) → x · (y + z) = (x · y) + (x · z) VII = (x y z : R) → (y + z) · x = (y · x) + (z · x) Rng : 𝓤 ⁺ ̇ Rng = Σ R ꞉ 𝓤 ̇ , Σ s ꞉ rng-structure R , rng-axioms R s rng-axioms-is-prop : (R : 𝓤 ̇ ) (s : rng-structure R) → is-prop (rng-axioms R s) rng-axioms-is-prop R (_+_ , _·_) = prop-criterion δ where δ : rng-axioms R (_+_ , _·_) → is-prop (rng-axioms R (_+_ , _·_)) δ (i , ii , iii , iv-vii) = γ where A = λ (O : R) → ((x : R) → x + O = x) × ((x : R) → Σ x' ꞉ R , x + x' = O) IV = Σ A a : (O O' : R) → ((x : R) → x + O = x) → ((x : R) → x + O' = x) → O = O' a O O' f f' = O =⟨ (f' O)⁻¹ ⟩ (O + O') =⟨ iii O O' ⟩ (O' + O) =⟨ f O' ⟩ O' ∎ b : (O : R) → is-prop ((x : R) → x + O = x) b O = Π-is-prop fe (λ x → i {x + O} {x}) c : (O : R) → ((x : R) → x + O = x) → (x : R) → is-prop (Σ x' ꞉ R , x + x' = O) c O f x (x' , p') (x'' , p'') = to-subtype-= (λ y → i {x + y} {O}) r where r : x' = x'' r = x' =⟨ (f x')⁻¹ ⟩ (x' + O) =⟨ ap (x' +_) (p'' ⁻¹) ⟩ (x' + (x + x'')) =⟨ (ii x' x x'')⁻¹ ⟩ ((x' + x) + x'') =⟨ ap (_+ x'') (iii x' x) ⟩ ((x + x') + x'') =⟨ ap (_+ x'') p' ⟩ (O + x'') =⟨ iii O x'' ⟩ (x'' + O) =⟨ f x'' ⟩ x'' ∎ d : (O : R) → is-prop (A O) d O (f , g) = φ (f , g) where φ : is-prop (A O) φ = ×-is-prop (b O) (Π-is-prop fe (λ x → c O f x)) IV-is-prop : is-prop IV IV-is-prop (O , f , g) (O' , f' , g') = e where e : (O , f , g) = (O' , f' , g') e = to-subtype-= d (a O O' f f') γ : is-prop (rng-axioms R (_+_ , _·_)) γ = ×-is-prop (being-set-is-prop fe) (×-is-prop (Π-is-prop fe (λ x → Π-is-prop fe (λ y → Π-is-prop fe λ z → i {(x + y) + z} {x + (y + z)}))) (×-is-prop (Π-is-prop fe (λ x → Π-is-prop fe (λ y → i {x + y} {y + x}))) (×-is-prop IV-is-prop (×-is-prop (Π-is-prop fe (λ x → Π-is-prop fe (λ y → Π-is-prop fe (λ z → i {(x · y) · z} {x · (y · z)})))) (×-is-prop (Π-is-prop fe (λ x → Π-is-prop fe (λ y → Π-is-prop fe (λ z → i {x · (y + z)} {(x · y) + (x · z)})))) (Π-is-prop fe (λ x → Π-is-prop fe (λ y → Π-is-prop fe (λ z → i {(y + z) · x} {(y · x) + (z · x)}))))))))) _≅[Rng]_ : Rng → Rng → 𝓤 ̇ (R , (_+_ , _·_) , _) ≅[Rng] (R' , (_+'_ , _·'_) , _) = Σ f ꞉ (R → R') , is-equiv f × ((λ x y → f (x + y)) = (λ x y → f x +' f y)) × ((λ x y → f (x · y)) = (λ x y → f x ·' f y)) characterization-of-rng-= : (𝓡 𝓡' : Rng) → (𝓡 = 𝓡') ≃ (𝓡 ≅[Rng] 𝓡') characterization-of-rng-= = characterization-of-= (ua 𝓤) (add-axioms rng-axioms rng-axioms-is-prop (join ∞-magma.sns-data ∞-magma.sns-data)) ⟨_⟩ : (𝓡 : Rng) → 𝓤 ̇ ⟨ R , _ ⟩ = R ring-structure : 𝓤 ̇ → 𝓤 ̇ ring-structure X = X × rng-structure X ring-axioms : (R : 𝓤 ̇ ) → ring-structure R → 𝓤 ̇ ring-axioms R (𝟏 , _+_ , _·_) = rng-axioms R (_+_ , _·_) × VIII where VIII = (x : R) → (x · 𝟏 = x) × (𝟏 · x = x) ring-axioms-is-prop : (R : 𝓤 ̇ ) (s : ring-structure R) → is-prop (ring-axioms R s) ring-axioms-is-prop R (𝟏 , _+_ , _·_) ((i , ii-vii) , viii) = γ ((i , ii-vii) , viii) where γ : is-prop (ring-axioms R (𝟏 , _+_ , _·_)) γ = ×-is-prop (rng-axioms-is-prop R (_+_ , _·_)) (Π-is-prop fe (λ x → ×-is-prop (i {x · 𝟏} {x}) (i {𝟏 · x} {x}))) Ring : 𝓤 ⁺ ̇ Ring = Σ R ꞉ 𝓤 ̇ , Σ s ꞉ ring-structure R , ring-axioms R s _≅[Ring]_ : Ring → Ring → 𝓤 ̇ (R , (𝟏 , _+_ , _·_) , _) ≅[Ring] (R' , (𝟏' , _+'_ , _·'_) , _) = Σ f ꞉ (R → R') , is-equiv f × (f 𝟏 = 𝟏') × ((λ x y → f (x + y)) = (λ x y → f x +' f y)) × ((λ x y → f (x · y)) = (λ x y → f x ·' f y)) characterization-of-ring-= : (𝓡 𝓡' : Ring) → (𝓡 = 𝓡') ≃ (𝓡 ≅[Ring] 𝓡') characterization-of-ring-= = sip.characterization-of-= (ua 𝓤) (sip-with-axioms.add-axioms ring-axioms ring-axioms-is-prop (sip-join.join pointed-type.sns-data (join ∞-magma.sns-data ∞-magma.sns-data))) is-commutative : Rng → 𝓤 ̇ is-commutative (R , (_+_ , _·_) , _) = (x y : R) → x · y = y · x being-commutative-is-prop : (𝓡 : Rng) → is-prop (is-commutative 𝓡) being-commutative-is-prop (R , (_+_ , _·_) , i , ii-vii) = Π-is-prop fe (λ x → Π-is-prop fe (λ y → i {x · y} {y · x})) open import UF.Powerset is-ideal : (𝓡 : Rng) → 𝓟 ⟨ 𝓡 ⟩ → 𝓤 ̇ is-ideal (R , (_+_ , _·_) , _) I = (x y : R) → (x ∈ I → y ∈ I → (x + y) ∈ I) × (x ∈ I → (x · y) ∈ I) × (y ∈ I → (x · y) ∈ I) is-local : Rng → 𝓤 ⁺ ̇ is-local 𝓡 = ∃! I ꞉ 𝓟 ⟨ 𝓡 ⟩ , (is-ideal 𝓡 I → (J : 𝓟 ⟨ 𝓡 ⟩) → is-ideal 𝓡 J → J ⊆ I) being-local-is-prop : (𝓡 : Rng) → is-prop (is-local 𝓡) being-local-is-prop 𝓡 = ∃!-is-prop fe open import UF.PropTrunc module _ (pt : propositional-truncations-exist) where open propositional-truncations-exist pt public open PropositionalTruncation pt open import Naturals.Order is-noetherian : (𝓡 : Rng) → 𝓤 ⁺ ̇ is-noetherian 𝓡 = (I : ℕ → 𝓟 ⟨ 𝓡 ⟩) → ((n : ℕ) → is-ideal 𝓡 (I n)) → ((n : ℕ) → I n ⊆ I (succ n)) → ∃ m ꞉ ℕ , ((n : ℕ) → m ≤ n → I m = I n) NoetherianRng : 𝓤 ⁺ ̇ NoetherianRng = Σ 𝓡 ꞉ Rng , is-noetherian 𝓡 being-noetherian-is-prop : (𝓡 : Rng) → is-prop (is-noetherian 𝓡) being-noetherian-is-prop 𝓡 = Π-is-prop fe (λ I → Π-is-prop fe (λ _ → Π-is-prop fe (λ _ → ∃-is-prop))) forget-Noether : NoetherianRng → Rng forget-Noether (𝓡 , _) = 𝓡 forget-Noether-is-embedding : is-embedding forget-Noether forget-Noether-is-embedding = pr₁-is-embedding being-noetherian-is-prop _≅[NoetherianRng]_ : NoetherianRng → NoetherianRng → 𝓤 ̇ ((R , (_+_ , _·_) , _) , _) ≅[NoetherianRng] ((R' , (_+'_ , _·'_) , _) , _) = Σ f ꞉ (R → R') , is-equiv f × ((λ x y → f (x + y)) = (λ x y → f x +' f y)) × ((λ x y → f (x · y)) = (λ x y → f x ·' f y)) NB : (𝓡 𝓡' : NoetherianRng) → (𝓡 ≅[NoetherianRng] 𝓡') = (forget-Noether 𝓡 ≅[Rng] forget-Noether 𝓡') NB 𝓡 𝓡' = refl characterization-of-nrng-= : (𝓡 𝓡' : NoetherianRng) → (𝓡 = 𝓡') ≃ (𝓡 ≅[NoetherianRng] 𝓡') characterization-of-nrng-= 𝓡 𝓡' = (𝓡 = 𝓡') ≃⟨ i ⟩ (forget-Noether 𝓡 = forget-Noether 𝓡') ≃⟨ ii ⟩ (𝓡 ≅[NoetherianRng] 𝓡') ■ where i = ≃-sym (embedding-criterion-converse forget-Noether forget-Noether-is-embedding 𝓡 𝓡') ii = characterization-of-rng-= (forget-Noether 𝓡) (forget-Noether 𝓡') isomorphic-NoetherianRng-transport : (A : NoetherianRng → 𝓥 ̇ ) → (𝓡 𝓡' : NoetherianRng) → 𝓡 ≅[NoetherianRng] 𝓡' → A 𝓡 → A 𝓡' isomorphic-NoetherianRng-transport A 𝓡 𝓡' i a = a' where p : 𝓡 = 𝓡' p = ⌜ characterization-of-nrng-= 𝓡 𝓡' ⌝⁻¹ i a' : A 𝓡' a' = transport A p a is-CNL : Ring → 𝓤 ⁺ ̇ is-CNL (R , (𝟏 , _+_ , _·_) , i-vii , viii) = is-commutative 𝓡 × is-noetherian 𝓡 × is-local 𝓡 where 𝓡 : Rng 𝓡 = (R , (_+_ , _·_) , i-vii) being-CNL-is-prop : (𝓡 : Ring) → is-prop (is-CNL 𝓡) being-CNL-is-prop (R , (𝟏 , _+_ , _·_) , i-vii , viii) = ×-is-prop (being-commutative-is-prop 𝓡) (×-is-prop (being-noetherian-is-prop 𝓡) (being-local-is-prop 𝓡)) where 𝓡 : Rng 𝓡 = (R , (_+_ , _·_) , i-vii) CNL-Ring : 𝓤 ⁺ ̇ CNL-Ring = Σ 𝓡 ꞉ Ring , is-CNL 𝓡 _≅[CNL]_ : CNL-Ring → CNL-Ring → 𝓤 ̇ ((R , (𝟏 , _+_ , _·_) , _) , _) ≅[CNL] ((R' , (𝟏' , _+'_ , _·'_) , _) , _) = Σ f ꞉ (R → R') , is-equiv f × (f 𝟏 = 𝟏') × ((λ x y → f (x + y)) = (λ x y → f x +' f y)) × ((λ x y → f (x · y)) = (λ x y → f x ·' f y)) forget-CNL : CNL-Ring → Ring forget-CNL (𝓡 , _) = 𝓡 forget-CNL-is-embedding : is-embedding forget-CNL forget-CNL-is-embedding = pr₁-is-embedding being-CNL-is-prop NB' : (𝓡 𝓡' : CNL-Ring) → (𝓡 ≅[CNL] 𝓡') = (forget-CNL 𝓡 ≅[Ring] forget-CNL 𝓡') NB' 𝓡 𝓡' = refl characterization-of-CNL-ring-= : (𝓡 𝓡' : CNL-Ring) → (𝓡 = 𝓡') ≃ (𝓡 ≅[CNL] 𝓡') characterization-of-CNL-ring-= 𝓡 𝓡' = (𝓡 = 𝓡') ≃⟨ i ⟩ (forget-CNL 𝓡 = forget-CNL 𝓡') ≃⟨ ii ⟩ (𝓡 ≅[CNL] 𝓡') ■ where i = ≃-sym (embedding-criterion-converse forget-CNL forget-CNL-is-embedding 𝓡 𝓡') ii = characterization-of-ring-= (forget-CNL 𝓡) (forget-CNL 𝓡') isomorphic-CNL-Ring-transport : (A : CNL-Ring → 𝓥 ̇ ) → (𝓡 𝓡' : CNL-Ring) → 𝓡 ≅[CNL] 𝓡' → A 𝓡 → A 𝓡' isomorphic-CNL-Ring-transport A 𝓡 𝓡' i a = a' where p : 𝓡 = 𝓡' p = ⌜ characterization-of-CNL-ring-= 𝓡 𝓡' ⌝⁻¹ i a' : A 𝓡' a' = transport A p a module slice {𝓤 𝓥 : Universe} (R : 𝓥 ̇ ) where open sip S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇ S X = X → R sns-data : SNS S (𝓤 ⊔ 𝓥) sns-data = (ι , ρ , θ) where ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇ ι (X , g) (Y , h) (f , _) = (g = h ∘ f) ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩) ρ (X , g) = 𝓻𝓮𝒻𝓵 g k : {X : 𝓤 ̇ } {g h : S X} → canonical-map ι ρ g h ∼ -id (g = h) k (refl {g}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 g) θ : {X : 𝓤 ̇ } (g h : S X) → is-equiv (canonical-map ι ρ g h) θ g h = equiv-closed-under-∼ id (canonical-map ι ρ g h) (id-is-equiv (g = h)) k _/_ : (𝓤 : Universe) → 𝓥 ̇ → 𝓤 ⁺ ⊔ 𝓥 ̇ 𝓤 / Y = Σ X ꞉ 𝓤 ̇ , (X → Y) _≅_ : 𝓤 / R → 𝓤 / R → 𝓤 ⊔ 𝓥 ̇ (X , g) ≅ (Y , h) = Σ f ꞉ (X → Y), is-equiv f × (g = h ∘ f) characterization-of-/-= : is-univalent 𝓤 → (A B : 𝓤 / R) → (A = B) ≃ (A ≅ B) characterization-of-/-= ua = characterization-of-= ua sns-data module slice-variation {𝓤 𝓥 : Universe} (R : 𝓥 ̇ ) (ua : is-univalent 𝓤) (fe : funext 𝓤 𝓥) where open sip S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇ S X = X → R sns-data : SNS S (𝓤 ⊔ 𝓥) sns-data = (ι , ρ , θ) where ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇ ι (X , g) (Y , h) (f , _) = ((x : X) → g x = h (f x)) ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩) ρ (X , g) = λ x → 𝓻𝓮𝒻𝓵 (g x) k : {X : 𝓤 ̇ } {g h : S X} → canonical-map ι ρ g h ∼ happly' g h k (refl {g}) = 𝓻𝓮𝒻𝓵 (λ x → 𝓻𝓮𝒻𝓵 (g x)) θ : {X : 𝓤 ̇ } (g h : S X) → is-equiv (canonical-map ι ρ g h) θ g h = equiv-closed-under-∼ (happly' g h) (canonical-map ι ρ g h) (fe g h) k _/_ : (𝓤 : Universe) → 𝓥 ̇ → 𝓤 ⁺ ⊔ 𝓥 ̇ 𝓤 / Y = Σ X ꞉ 𝓤 ̇ , (X → Y) _≅_ : 𝓤 / R → 𝓤 / R → 𝓤 ⊔ 𝓥 ̇ (X , g) ≅ (Y , h) = Σ f ꞉ (X → Y), is-equiv f × ((x : X) → g x = h (f x)) characterization-of-/-= : (A B : 𝓤 / R) → (A = B) ≃ (A ≅ B) characterization-of-/-= = characterization-of-= ua sns-data module universe-a-la-tarski (𝓤 𝓥 : Universe) (ua : is-univalent 𝓤) (fe : funext 𝓤 (𝓥 ⁺)) where TarskiUniverse : (𝓤 𝓥 : Universe) → (𝓤 ⊔ 𝓥)⁺ ̇ TarskiUniverse 𝓤 𝓥 = Σ X ꞉ 𝓤 ̇ , (X → 𝓥 ̇ ) _≅_ : TarskiUniverse 𝓤 𝓥 → TarskiUniverse 𝓤 𝓥 → 𝓤 ⊔ (𝓥 ⁺) ̇ (X , T) ≅ (X' , T') = Σ f ꞉ (X → X'), is-equiv f × ((x : X) → T x = T' (f x) ) characterization-of-Tarski-= : (A B : TarskiUniverse 𝓤 𝓥) → (A = B) ≃ (A ≅ B) characterization-of-Tarski-= = slice-variation.characterization-of-/-= (𝓥 ̇ ) ua fe module universe-a-la-tarski-hSet-example (𝓤 : Universe) (ua : is-univalent (𝓤 ⁺)) where fe : funext (𝓤 ⁺) (𝓤 ⁺) fe = univalence-gives-funext ua open universe-a-la-tarski (𝓤 ⁺) 𝓤 ua fe hset : TarskiUniverse (𝓤 ⁺) 𝓤 hset = hSet 𝓤 , pr₁ example : (X : 𝓤 ⁺ ̇ ) (T : X → 𝓤 ̇ ) → ((X , T) = hset) ≃ (Σ f ꞉ (X → hSet 𝓤) , is-equiv f × ((x : X) → T x = pr₁ (f x))) example X T = characterization-of-Tarski-= (X , T) hset module generalized-metric-space {𝓤 𝓥 𝓦 : Universe} (R : 𝓥 ̇ ) (axioms : (X : 𝓤 ̇ ) → (X → X → R) → 𝓦 ̇ ) (axiomss : (X : 𝓤 ̇ ) (d : X → X → R) → is-prop (axioms X d)) where open sip open sip-with-axioms S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇ S X = X → X → R sns-data : SNS S (𝓤 ⊔ 𝓥) sns-data = (ι , ρ , θ) where ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇ ι (X , d) (Y , e) (f , _) = (d = λ x x' → e (f x) (f x')) ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩) ρ (X , d) = 𝓻𝓮𝒻𝓵 d h : {X : 𝓤 ̇ } {d e : S X} → canonical-map ι ρ d e ∼ -id (d = e) h (refl {d}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 d) θ : {X : 𝓤 ̇ } (d e : S X) → is-equiv (canonical-map ι ρ d e) θ d e = equiv-closed-under-∼ id (canonical-map ι ρ d e) (id-is-equiv (d = e)) h M : 𝓤 ⁺ ⊔ 𝓥 ⊔ 𝓦 ̇ M = Σ X ꞉ 𝓤 ̇ , Σ d ꞉ (X → X → R) , axioms X d _≅_ : M → M → 𝓤 ⊔ 𝓥 ̇ (X , d , _) ≅ (Y , e , _) = Σ f ꞉ (X → Y), is-equiv f × (d = λ x x' → e (f x) (f x')) characterization-of-M-= : is-univalent 𝓤 → (A B : M) → (A = B) ≃ (A ≅ B) characterization-of-M-= ua = characterization-of-=-with-axioms ua sns-data axioms axiomss _≅'_ : M → M → 𝓤 ⊔ 𝓥 ̇ (X , d , _) ≅' (Y , e , _) = Σ f ꞉ (X → Y), is-equiv f × ((x x' : X) → d x x' = e (f x) (f x')) characterization-of-M-=' : Univalence → ((X , d , a) (Y , e , b) : M) → ((X , d , a) = (Y , e , b)) ≃ (Σ f ꞉ (X → Y), is-equiv f × ((x x' : X) → d x x' = e (f x) (f x'))) characterization-of-M-=' ua (X , d , a) (Y , e , b) = characterization-of-M-= (ua 𝓤) (X , d , a) (Y , e , b) ● Σ-cong (λ f → ×-cong (≃-refl (is-equiv f)) (≃-funext₂ (Univalence-gives-FunExt ua 𝓤 (𝓤 ⊔ 𝓥)) (Univalence-gives-FunExt ua 𝓤 𝓥) (λ x y → d x y) (λ x x' → e (f x) (f x')))) module generalized-topological-space (𝓤 𝓥 : Universe) (R : 𝓥 ̇ ) (axioms : (X : 𝓤 ̇ ) → ((X → R) → R) → 𝓤 ⊔ 𝓥 ̇ ) (axiomss : (X : 𝓤 ̇ ) (𝓞 : (X → R) → R) → is-prop (axioms X 𝓞)) where open sip open sip-with-axioms ℙ : 𝓦 ̇ → 𝓥 ⊔ 𝓦 ̇ ℙ X = X → R _∊_ : {X : 𝓦 ̇ } → X → ℙ X → R x ∊ A = A x inverse-image : {X Y : 𝓤 ̇ } → (X → Y) → ℙ Y → ℙ X inverse-image f B = λ x → f x ∊ B ℙℙ : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇ ℙℙ X = ℙ (ℙ X) Space : 𝓤 ⁺ ⊔ 𝓥 ̇ Space = Σ X ꞉ 𝓤 ̇ , Σ 𝓞 ꞉ ℙℙ X , axioms X 𝓞 sns-data : SNS ℙℙ (𝓤 ⊔ 𝓥) sns-data = (ι , ρ , θ) where ι : (A B : Σ ℙℙ) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇ ι (X , 𝓞X) (Y , 𝓞Y) (f , _) = (λ (V : ℙ Y) → inverse-image f V ∊ 𝓞X) = 𝓞Y ρ : (A : Σ ℙℙ) → ι A A (≃-refl ⟨ A ⟩) ρ (X , 𝓞) = 𝓻𝓮𝒻𝓵 𝓞 h : {X : 𝓤 ̇ } {𝓞 𝓞' : ℙℙ X} → canonical-map ι ρ 𝓞 𝓞' ∼ -id (𝓞 = 𝓞') h (refl {𝓞}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 𝓞) θ : {X : 𝓤 ̇ } (𝓞 𝓞' : ℙℙ X) → is-equiv (canonical-map ι ρ 𝓞 𝓞') θ {X} 𝓞 𝓞' = equiv-closed-under-∼ id (canonical-map ι ρ 𝓞 𝓞') (id-is-equiv (𝓞 = 𝓞')) h _≅_ : Space → Space → 𝓤 ⊔ 𝓥 ̇ (X , 𝓞X , _) ≅ (Y , 𝓞Y , _) = Σ f ꞉ (X → Y), is-equiv f × ((λ V → inverse-image f V ∊ 𝓞X) = 𝓞Y) characterization-of-Space-= : is-univalent 𝓤 → (A B : Space) → (A = B) ≃ (A ≅ B) characterization-of-Space-= ua = characterization-of-=-with-axioms ua sns-data axioms axiomss _≅'_ : Space → Space → 𝓤 ⊔ 𝓥 ̇ (X , F , _) ≅' (Y , G , _) = Σ f ꞉ (X → Y), is-equiv f × ((λ (v : Y → R) → F (v ∘ f)) = G) characterization-of-Space-=' : is-univalent 𝓤 → (A B : Space) → (A = B) ≃ (A ≅' B) characterization-of-Space-=' = characterization-of-Space-= module selection-space (𝓤 𝓥 : Universe) (R : 𝓥 ̇ ) (axioms : (X : 𝓤 ̇ ) → ((X → R) → X) → 𝓤 ⊔ 𝓥 ̇ ) (axiomss : (X : 𝓤 ̇ ) (ε : (X → R) → X) → is-prop (axioms X ε)) where open sip open sip-with-axioms S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇ S X = (X → R) → X SelectionSpace : 𝓤 ⁺ ⊔ 𝓥 ̇ SelectionSpace = Σ X ꞉ 𝓤 ̇ , Σ ε ꞉ S X , axioms X ε sns-data : SNS S (𝓤 ⊔ 𝓥) sns-data = (ι , ρ , θ) where ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇ ι (X , ε) (Y , δ) (f , _) = (λ (q : Y → R) → f (ε (q ∘ f))) = δ ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩) ρ (X , ε) = 𝓻𝓮𝒻𝓵 ε θ : {X : 𝓤 ̇ } (ε δ : S X) → is-equiv (canonical-map ι ρ ε δ) θ {X} ε δ = γ where h : canonical-map ι ρ ε δ ∼ -id (ε = δ) h (refl {ε}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 ε) γ : is-equiv (canonical-map ι ρ ε δ) γ = equiv-closed-under-∼ id (canonical-map ι ρ ε δ) (id-is-equiv (ε = δ)) h _≅_ : SelectionSpace → SelectionSpace → 𝓤 ⊔ 𝓥 ̇ (X , ε , _) ≅ (Y , δ , _) = Σ f ꞉ (X → Y), is-equiv f × ((λ (q : Y → R) → f (ε (q ∘ f))) = δ) characterization-of-selection-space-= : is-univalent 𝓤 → (A B : SelectionSpace) → (A = B) ≃ (A ≅ B) characterization-of-selection-space-= ua = characterization-of-=-with-axioms ua sns-data axioms axiomss module contrived-example (𝓤 : Universe) where open sip contrived-= : is-univalent 𝓤 → (X Y : 𝓤 ̇ ) (φ : (X → X) → X) (γ : (Y → Y) → Y) → ((X , φ) = (Y , γ)) ≃ (Σ f ꞉ (X → Y) , Σ i ꞉ is-equiv f , (λ (g : Y → Y) → f (φ (inverse f i ∘ g ∘ f))) = γ) contrived-= ua X Y φ γ = characterization-of-= ua ((λ (X , φ) (Y , γ) (f , i) → (λ (g : Y → Y) → f (φ (inverse f i ∘ g ∘ f))) = γ) , (λ (X , φ) → 𝓻𝓮𝒻𝓵 φ) , (λ φ γ → equiv-closed-under-∼ _ _ (id-is-equiv (φ = γ)) (λ {(refl {φ}) → 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 φ)}))) (X , φ) (Y , γ) module generalized-functor-algebra {𝓤 𝓥 : Universe} (F : 𝓤 ̇ → 𝓥 ̇ ) (𝓕 : {X Y : 𝓤 ̇ } → (X → Y) → F X → F Y) (𝓕-id : {X : 𝓤 ̇ } → 𝓕 (-id X) = -id (F X)) where open sip S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇ S X = F X → X sns-data : SNS S (𝓤 ⊔ 𝓥) sns-data = (ι , ρ , θ) where ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇ ι (X , α) (Y , β) (f , _) = f ∘ α = β ∘ 𝓕 f ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩) ρ (X , α) = α =⟨ ap (α ∘_) (𝓕-id ⁻¹) ⟩ α ∘ 𝓕 id ∎ θ : {X : 𝓤 ̇ } (α β : S X) → is-equiv (canonical-map ι ρ α β) θ {X} α β = γ where c : α = β → α = β ∘ 𝓕 id c = transport (α =_) (ρ (X , β)) i : is-equiv c i = transports-are-equivs (ρ (X , β)) h : canonical-map ι ρ α β ∼ c h refl = ρ (X , α) =⟨ refl-left-neutral ⁻¹ ⟩ 𝓻𝓮𝒻𝓵 α ∙ ρ (X , α) ∎ γ : is-equiv (canonical-map ι ρ α β) γ = equiv-closed-under-∼ c (canonical-map ι ρ α β) i h characterization-of-functor-algebra-= : is-univalent 𝓤 → (X Y : 𝓤 ̇ ) (α : F X → X) (β : F Y → Y) → ((X , α) = (Y , β)) ≃ (Σ f ꞉ (X → Y), is-equiv f × (f ∘ α = β ∘ 𝓕 f)) characterization-of-functor-algebra-= ua X Y α β = characterization-of-= ua sns-data (X , α) (Y , β) type-valued-preorder-S : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ̇ type-valued-preorder-S {𝓤} {𝓥} X = Σ _≤_ ꞉ (X → X → 𝓥 ̇ ) , ((x : X) → x ≤ x) × ((x y z : X) → x ≤ y → y ≤ z → x ≤ z) module type-valued-preorder (𝓤 𝓥 : Universe) (ua : Univalence) where open sip fe : Fun-Ext fe {𝓤} {𝓥} = Univalence-gives-FunExt ua 𝓤 𝓥 S : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ̇ S = type-valued-preorder-S {𝓤} {𝓥} Type-valued-preorder : (𝓤 ⊔ 𝓥) ⁺ ̇ Type-valued-preorder = Σ S Ob : Σ S → 𝓤 ̇ Ob (X , homX , idX , compX ) = X hom : (𝓧 : Σ S) → Ob 𝓧 → Ob 𝓧 → 𝓥 ̇ hom (X , homX , idX , compX) = homX 𝒾𝒹 : (𝓧 : Σ S) (x : Ob 𝓧) → hom 𝓧 x x 𝒾𝒹 (X , homX , idX , compX) = idX comp : (𝓧 : Σ S) (x y z : Ob 𝓧) → hom 𝓧 x y → hom 𝓧 y z → hom 𝓧 x z comp (X , homX , idX , compX) = compX functorial : (𝓧 𝓐 : Σ S) → (F : Ob 𝓧 → Ob 𝓐) → ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y)) → 𝓤 ⊔ 𝓥 ̇ functorial 𝓧 𝓐 F 𝓕' = pidentity × pcomposition where _o_ : {x y z : Ob 𝓧} → hom 𝓧 y z → hom 𝓧 x y → hom 𝓧 x z g o f = comp 𝓧 _ _ _ f g _□_ : {a b c : Ob 𝓐} → hom 𝓐 b c → hom 𝓐 a b → hom 𝓐 a c g □ f = comp 𝓐 _ _ _ f g 𝓕 : {x y : Ob 𝓧} → hom 𝓧 x y → hom 𝓐 (F x) (F y) 𝓕 f = 𝓕' _ _ f pidentity = (λ x → 𝓕 (𝒾𝒹 𝓧 x)) = (λ x → 𝒾𝒹 𝓐 (F x)) pcomposition = (λ x y z (f : hom 𝓧 x y) (g : hom 𝓧 y z) → 𝓕 (g o f)) = (λ x y z (f : hom 𝓧 x y) (g : hom 𝓧 y z) → 𝓕 g □ 𝓕 f) sns-data : SNS S (𝓤 ⊔ (𝓥 ⁺)) sns-data = (ι , ρ , θ) where ι : (𝓧 𝓐 : Σ S) → ⟨ 𝓧 ⟩ ≃ ⟨ 𝓐 ⟩ → 𝓤 ⊔ (𝓥 ⁺) ̇ ι 𝓧 𝓐 (F , _) = Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y)) , functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p) ρ : (𝓧 : Σ S) → ι 𝓧 𝓧 (≃-refl ⟨ 𝓧 ⟩) ρ 𝓧 = 𝓻𝓮𝒻𝓵 (hom 𝓧) , 𝓻𝓮𝒻𝓵 (𝒾𝒹 𝓧) , 𝓻𝓮𝒻𝓵 (comp 𝓧) θ : {X : 𝓤 ̇ } (s t : S X) → is-equiv (canonical-map ι ρ s t) θ {X} (homX , idX , compX) (homA , idA , compA) = g where φ = canonical-map ι ρ (homX , idX , compX) (homA , idA , compA) γ : codomain φ → domain φ γ (refl , refl , refl) = refl η : γ ∘ φ ∼ id η refl = refl ε : φ ∘ γ ∼ id ε (refl , refl , refl) = refl g : is-equiv φ g = qinvs-are-equivs φ (γ , η , ε) lemma : (𝓧 𝓐 : Σ S) (F : Ob 𝓧 → Ob 𝓐) → (Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y)) , functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p)) ≃ (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y)) , (∀ x y → is-equiv (𝓕 x y)) × functorial 𝓧 𝓐 F 𝓕) lemma 𝓧 𝓐 F = γ where e = (hom 𝓧 = λ x y → hom 𝓐 (F x) (F y)) ≃⟨ i ⟩ (∀ x y → hom 𝓧 x y = hom 𝓐 (F x) (F y)) ≃⟨ ii ⟩ (∀ x y → hom 𝓧 x y ≃ hom 𝓐 (F x) (F y)) ≃⟨ iii ⟩ (∀ x → Σ φ ꞉ (∀ y → hom 𝓧 x y → hom 𝓐 (F x) (F y)) , ∀ y → is-equiv (φ y)) ≃⟨ iv ⟩ (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y)) , (∀ x y → is-equiv (𝓕 x y))) ■ where i = ≃-funext₂ fe fe (hom 𝓧 ) λ x y → hom 𝓐 (F x) (F y) ii = Π-cong fe fe _ _ _ (λ x → Π-cong fe fe _ _ _ (λ y → univalence-≃ (ua 𝓥) (hom 𝓧 x y) (hom 𝓐 (F x) (F y)))) iii = Π-cong fe fe _ _ _ (λ y → ΠΣ-distr-≃) iv = ΠΣ-distr-≃ v : (p : hom 𝓧 = λ x y → hom 𝓐 (F x) (F y)) → functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p) ≃ functorial 𝓧 𝓐 F (pr₁ (⌜ e ⌝ p)) v refl = ≃-refl _ γ = (Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y)) , functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p)) ≃⟨ vi ⟩ (Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y)) , functorial 𝓧 𝓐 F (pr₁ (⌜ e ⌝ p))) ≃⟨ vii ⟩ (Σ σ ꞉ (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y)) , (∀ x y → is-equiv (𝓕 x y))) , functorial 𝓧 𝓐 F (pr₁ σ)) ≃⟨ viii ⟩ (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y)) , (∀ x y → is-equiv (𝓕 x y)) × functorial 𝓧 𝓐 F 𝓕) ■ where vi = Σ-cong v vii = Σ-change-of-variable _ ⌜ e ⌝ (⌜⌝-is-equiv e) viii = Σ-assoc characterization-of-type-valued-preorder-= : (𝓧 𝓐 : Σ S) → (𝓧 = 𝓐) ≃ (Σ F ꞉ (Ob 𝓧 → Ob 𝓐) , is-equiv F × (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y)) , (∀ x y → is-equiv (𝓕 x y)) × functorial 𝓧 𝓐 F 𝓕)) characterization-of-type-valued-preorder-= 𝓧 𝓐 = (𝓧 = 𝓐) ≃⟨ i ⟩ (Σ F ꞉ (Ob 𝓧 → Ob 𝓐) , is-equiv F × (Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y)) , functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p))) ≃⟨ ii ⟩ (Σ F ꞉ (Ob 𝓧 → Ob 𝓐) , is-equiv F × (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y)) , (∀ x y → is-equiv (𝓕 x y)) × functorial 𝓧 𝓐 F 𝓕)) ■ where i = characterization-of-= (ua 𝓤) sns-data 𝓧 𝓐 ii = Σ-cong (λ F → Σ-cong (λ _ → lemma 𝓧 𝓐 F)) module type-valued-preorder-with-axioms (𝓤 𝓥 𝓦 : Universe) (ua : Univalence) (axioms : (X : 𝓤 ̇ ) → type-valued-preorder-S {𝓤} {𝓥} X → 𝓦 ̇ ) (axiomss : (X : 𝓤 ̇ ) (s : type-valued-preorder-S X) → is-prop (axioms X s)) where open sip open sip-with-axioms open type-valued-preorder 𝓤 𝓥 ua S' : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ⊔ 𝓦 ̇ S' X = Σ s ꞉ S X , axioms X s sns-data' : SNS S' (𝓤 ⊔ (𝓥 ⁺)) sns-data' = add-axioms axioms axiomss sns-data characterization-of-type-valued-preorder-=-with-axioms : (𝓧' 𝓐' : Σ S') → (𝓧' = 𝓐') ≃ (Σ F ꞉ (Ob [ 𝓧' ] → Ob [ 𝓐' ]) , is-equiv F × (Σ 𝓕 ꞉ ((x y : Ob [ 𝓧' ]) → hom [ 𝓧' ] x y → hom [ 𝓐' ] (F x) (F y)) , (∀ x y → is-equiv (𝓕 x y)) × functorial [ 𝓧' ] [ 𝓐' ] F 𝓕)) characterization-of-type-valued-preorder-=-with-axioms 𝓧' 𝓐' = (𝓧' = 𝓐') ≃⟨ i ⟩ ([ 𝓧' ] ≃[ sns-data ] [ 𝓐' ]) ≃⟨ ii ⟩ _ ■ where i = characterization-of-=-with-axioms (ua 𝓤) sns-data axioms axiomss 𝓧' 𝓐' ii = Σ-cong (λ F → Σ-cong (λ _ → lemma [ 𝓧' ] [ 𝓐' ] F)) module category (𝓤 𝓥 : Universe) (ua : Univalence) where open type-valued-preorder-with-axioms 𝓤 𝓥 (𝓤 ⊔ 𝓥) ua fe : Fun-Ext fe {𝓤} {𝓥} = Univalence-gives-FunExt ua 𝓤 𝓥 S : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ̇ S = type-valued-preorder-S {𝓤} {𝓥} category-axioms : (X : 𝓤 ̇ ) → S X → 𝓤 ⊔ 𝓥 ̇ category-axioms X (homX , idX , compX) = hom-sets × identityl × identityr × associativity where _o_ : {x y z : X} → homX y z → homX x y → homX x z g o f = compX _ _ _ f g hom-sets = ∀ x y → is-set (homX x y) identityl = ∀ x y (f : homX x y) → f o (idX x) = f identityr = ∀ x y (f : homX x y) → (idX y) o f = f associativity = ∀ x y z t (f : homX x y) (g : homX y z) (h : homX z t) → (h o g) o f = h o (g o f) category-axioms-prop : (X : 𝓤 ̇ ) (s : S X) → is-prop (category-axioms X s) category-axioms-prop X (homX , idX , compX) ca = γ ca where i : ∀ x y → is-set (homX x y) i = pr₁ ca γ : is-prop (category-axioms X (homX , idX , compX)) γ = ×-is-prop ss (×-is-prop ls (×-is-prop rs as)) where ss = Π-is-prop fe (λ x → Π-is-prop fe (λ y → being-set-is-prop fe)) ls = Π-is-prop fe (λ x → Π-is-prop fe (λ y → Π-is-prop fe (λ f → i x y))) rs = Π-is-prop fe (λ x → Π-is-prop fe (λ y → Π-is-prop fe (λ f → i x y))) as = Π-is-prop fe (λ x → Π-is-prop fe (λ y → Π-is-prop fe (λ z → Π-is-prop fe (λ t → Π-is-prop fe (λ f → Π-is-prop fe (λ g → Π-is-prop fe (λ h → i x t))))))) Cat : (𝓤 ⊔ 𝓥)⁺ ̇ Cat = Σ X ꞉ 𝓤 ̇ , Σ s ꞉ S X , category-axioms X s Ob : Cat → 𝓤 ̇ Ob (X , (homX , idX , compX) , _) = X hom : (𝓧 : Cat) → Ob 𝓧 → Ob 𝓧 → 𝓥 ̇ hom (X , (homX , idX , compX) , _) = homX 𝒾𝒹 : (𝓧 : Cat) (x : Ob 𝓧) → hom 𝓧 x x 𝒾𝒹 (X , (homX , idX , compX) , _) = idX comp : (𝓧 : Cat) (x y z : Ob 𝓧) (f : hom 𝓧 x y) (g : hom 𝓧 y z) → hom 𝓧 x z comp (X , (homX , idX , compX) , _) = compX is-functorial : (𝓧 𝓐 : Cat) → (F : Ob 𝓧 → Ob 𝓐) → ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y)) → 𝓤 ⊔ 𝓥 ̇ is-functorial 𝓧 𝓐 F 𝓕' = pidentity × pcomposition where _o_ : {x y z : Ob 𝓧} → hom 𝓧 y z → hom 𝓧 x y → hom 𝓧 x z g o f = comp 𝓧 _ _ _ f g _□_ : {a b c : Ob 𝓐} → hom 𝓐 b c → hom 𝓐 a b → hom 𝓐 a c g □ f = comp 𝓐 _ _ _ f g 𝓕 : {x y : Ob 𝓧} → hom 𝓧 x y → hom 𝓐 (F x) (F y) 𝓕 f = 𝓕' _ _ f pidentity = (λ x → 𝓕 (𝒾𝒹 𝓧 x)) = (λ x → 𝒾𝒹 𝓐 (F x)) pcomposition = (λ x y z (f : hom 𝓧 x y) (g : hom 𝓧 y z) → 𝓕 (g o f)) = (λ x y z (f : hom 𝓧 x y) (g : hom 𝓧 y z) → 𝓕 g □ 𝓕 f) _⋍_ : Cat → Cat → 𝓤 ⊔ 𝓥 ̇ 𝓧 ⋍ 𝓐 = Σ F ꞉ (Ob 𝓧 → Ob 𝓐) , is-equiv F × (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y)) , (∀ x y → is-equiv (𝓕 x y)) × is-functorial 𝓧 𝓐 F 𝓕) idtoeqCat : (𝓧 𝓐 : Cat) → 𝓧 = 𝓐 → 𝓧 ⋍ 𝓐 idtoeqCat 𝓧 𝓧 (refl {𝓧}) = -id (Ob 𝓧 ) , id-is-equiv (Ob 𝓧 ) , (λ x y → -id (hom 𝓧 x y)) , (λ x y → id-is-equiv (hom 𝓧 x y)) , 𝓻𝓮𝒻𝓵 (𝒾𝒹 𝓧) , 𝓻𝓮𝒻𝓵 (comp 𝓧) characterization-of-category-= : (𝓧 𝓐 : Cat) → (𝓧 = 𝓐) ≃ (𝓧 ⋍ 𝓐) characterization-of-category-= = characterization-of-type-valued-preorder-=-with-axioms category-axioms category-axioms-prop idtoeqCat-is-equiv : (𝓧 𝓐 : Cat) → is-equiv (idtoeqCat 𝓧 𝓐) idtoeqCat-is-equiv 𝓧 𝓐 = equiv-closed-under-∼ _ _ (⌜⌝-is-equiv (characterization-of-category-= 𝓧 𝓐)) (γ 𝓧 𝓐) where γ : (𝓧 𝓐 : Cat) → idtoeqCat 𝓧 𝓐 ∼ ⌜ characterization-of-category-= 𝓧 𝓐 ⌝ γ 𝓧 𝓧 (refl {𝓧}) = 𝓻𝓮𝒻𝓵 (idtoeqCat 𝓧 𝓧 (𝓻𝓮𝒻𝓵 𝓧)) \end{code} We now consider ∞-magmas with the binary operation generalized to an operation of arbitrary arity. This is used to define σ-frames. \begin{code} module ∞-bigmagma {𝓤 𝓥 : Universe} (I : 𝓥 ̇ ) where open sip ∞-bigmagma-structure : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇ ∞-bigmagma-structure A = (I → A) → A ∞-Bigmagma : 𝓤 ⁺ ⊔ 𝓥 ̇ ∞-Bigmagma = Σ A ꞉ 𝓤 ̇ , ∞-bigmagma-structure A sns-data : SNS ∞-bigmagma-structure (𝓤 ⊔ 𝓥) sns-data = (ι , ρ , θ) where ι : (𝓐 𝓐' : ∞-Bigmagma) → ⟨ 𝓐 ⟩ ≃ ⟨ 𝓐' ⟩ → 𝓤 ⊔ 𝓥 ̇ ι (A , sup) (A' , sup') (f , _) = (λ 𝕒 → f (sup 𝕒)) = (λ 𝕒 → sup' (n ↦ f (𝕒 n))) ρ : (𝓐 : ∞-Bigmagma) → ι 𝓐 𝓐 (≃-refl ⟨ 𝓐 ⟩) ρ (A , sup) = 𝓻𝓮𝒻𝓵 sup h : {A : 𝓤 ̇ } {sup sup' : ∞-bigmagma-structure A} → canonical-map ι ρ sup sup' ∼ -id (sup = sup') h (refl {sup}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 sup) θ : {A : 𝓤 ̇ } (sup sup' : ∞-bigmagma-structure A) → is-equiv (canonical-map ι ρ sup sup') θ sup sup' = equiv-closed-under-∼ _ _ (id-is-equiv (sup = sup')) h _≅[∞-Bigmagma]_ : ∞-Bigmagma → ∞-Bigmagma → 𝓤 ⊔ 𝓥 ̇ (A , sup) ≅[∞-Bigmagma] (A' , sup') = Σ f ꞉ (A → A'), is-equiv f × ((λ 𝕒 → f (sup 𝕒)) = (λ 𝕒 → sup' (n ↦ f (𝕒 n)))) characterization-of-∞-Bigmagma-= : is-univalent 𝓤 → (A B : ∞-Bigmagma) → (A = B) ≃ (A ≅[∞-Bigmagma] B) characterization-of-∞-Bigmagma-= ua = characterization-of-= ua sns-data \end{code} We use the above in another module to define σ-frames. We now consider ∞-bigmagmas with all operations of all arities, which we use in another module to define frames. \begin{code} module ∞-hugemagma {𝓤 𝓥 : Universe} where open sip ∞-hugemagma-structure : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ̇ ∞-hugemagma-structure A = {N : 𝓥 ̇ } → (N → A) → A ∞-Hugemagma : (𝓤 ⊔ 𝓥)⁺ ̇ ∞-Hugemagma = Σ A ꞉ 𝓤 ̇ , ∞-hugemagma-structure A sns-data : SNS ∞-hugemagma-structure (𝓤 ⊔ (𝓥 ⁺)) sns-data = (ι , ρ , θ) where ι : (𝓐 𝓐' : ∞-Hugemagma) → ⟨ 𝓐 ⟩ ≃ ⟨ 𝓐' ⟩ → 𝓤 ⊔ (𝓥 ⁺) ̇ ι (A , sup) (A' , sup') (f , _) = (λ {N} (𝕒 : N → A) → f (sup 𝕒)) = (λ {N} 𝕒 → sup' (i ↦ f (𝕒 i))) ρ : (𝓐 : ∞-Hugemagma) → ι 𝓐 𝓐 (≃-refl ⟨ 𝓐 ⟩) ρ (A , sup) = refl h : {A : 𝓤 ̇ } {sup sup' : ∞-hugemagma-structure A} → canonical-map ι ρ sup sup' ∼ id h refl = refl θ : {A : 𝓤 ̇ } (sup sup' : ∞-hugemagma-structure A) → is-equiv (canonical-map ι ρ sup sup') θ sup sup' = equiv-closed-under-∼ _ _ (id-is-equiv _) h _≅[∞-Hugemagma]_ : ∞-Hugemagma → ∞-Hugemagma → 𝓤 ⊔ (𝓥 ⁺) ̇ (A , sup) ≅[∞-Hugemagma] (A' , sup') = Σ f ꞉ (A → A'), is-equiv f × ((λ {N} (𝕒 : N → A) → f (sup 𝕒)) = (λ {N} (𝕒 : N → A) → sup' (i ↦ f (𝕒 i)))) characterization-of-∞-Hugemagma-= : is-univalent 𝓤 → (A B : ∞-Hugemagma) → (A = B) ≃ (A ≅[∞-Hugemagma] B) characterization-of-∞-Hugemagma-= ua = characterization-of-= ua sns-data \end{code}