Martin Escardo, 30 April 2020
This ports the structure identity principle examples formulated and proved in
https://www.cs.bham.ac.uk/~mhe/HoTT-UF.in-Agda-Lecture-Notes/index.html
https://arxiv.org/abs/1911.00580
https://github.com/martinescardo/HoTT-UF.Agda-Lecture-Notes
Each example is in a submodule:
* ∞-magma
* magma
* pointed type
* pointed-∞-magma
* monoid
* associative ∞-magma
* group
* subgroups of an ambient group
* ring
* slice
* generalized metric space
* generalized topological space
* selection space
* contrived example
* generalized functor algebra
* type-valued preorder
* type-valued preorder with- xioms
* category
We also consider the following, which are not in the above lecture
notes:
* universe à la Tarski
* ∞-bigmagma
* ∞-hugemagma
\begin{code}
{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}
module UF.SIP-Examples where
open import MLTT.Spartan
open import Notation.Order
open import UF.Base
open import UF.SIP
open import UF.Equiv hiding (_≅_)
open import UF.Univalence
open import UF.EquivalenceExamples
open import UF.Subsingletons
open import UF.Embeddings
open import UF.Subsingletons-FunExt
open import UF.FunExt
open import UF.UA-FunExt
open import UF.Retracts
open import UF.Yoneda
module ∞-magma {𝓤 : Universe} where
open sip
∞-magma-structure : 𝓤 ̇ → 𝓤 ̇
∞-magma-structure X = X → X → X
∞-Magma : 𝓤 ⁺ ̇
∞-Magma = Σ X ꞉ 𝓤 ̇ , ∞-magma-structure X
sns-data : SNS ∞-magma-structure 𝓤
sns-data = (ι , ρ , θ)
where
ι : (A B : ∞-Magma) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ̇
ι (X , _·_) (Y , _*_) (f , _) = (λ x x' → f (x · x')) = (λ x x' → f x * f x')
ρ : (A : ∞-Magma) → ι A A (≃-refl ⟨ A ⟩)
ρ (X , _·_) = 𝓻𝓮𝒻𝓵 _·_
h : {X : 𝓤 ̇ } {_·_ _*_ : ∞-magma-structure X}
→ canonical-map ι ρ _·_ _*_ ∼ -id (_·_ = _*_)
h (refl {_·_}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 _·_)
θ : {X : 𝓤 ̇ } (_·_ _*_ : ∞-magma-structure X)
→ is-equiv (canonical-map ι ρ _·_ _*_)
θ _·_ _*_ = equiv-closed-under-∼ _ _ (id-is-equiv (_·_ = _*_)) h
_≅_ : ∞-Magma → ∞-Magma → 𝓤 ̇
(X , _·_) ≅ (Y , _*_) =
Σ f ꞉ (X → Y) , is-equiv f
× ((λ x x' → f (x · x')) = (λ x x' → f x * f x'))
characterization-of-∞-Magma-= : is-univalent 𝓤 → (A B : ∞-Magma) → (A = B) ≃ (A ≅ B)
characterization-of-∞-Magma-= ua = characterization-of-= ua sns-data
characterization-of-characterization-of-∞-Magma-= :
(ua : is-univalent 𝓤) (A : ∞-Magma)
→
⌜ characterization-of-∞-Magma-= ua A A ⌝ (𝓻𝓮𝒻𝓵 A)
=
(-id ⟨ A ⟩ , id-is-equiv ⟨ A ⟩ , refl)
characterization-of-characterization-of-∞-Magma-= ua A = refl
module magma {𝓤 : Universe} where
open sip-with-axioms
Magma : 𝓤 ⁺ ̇
Magma = Σ X ꞉ 𝓤 ̇ , (X → X → X) × is-set X
_≅_ : Magma → Magma → 𝓤 ̇
(X , _·_ , _) ≅ (Y , _*_ , _) =
Σ f ꞉ (X → Y), is-equiv f
× ((λ x x' → f (x · x')) = (λ x x' → f x * f x'))
characterization-of-Magma-= : is-univalent 𝓤 → (A B : Magma ) → (A = B) ≃ (A ≅ B)
characterization-of-Magma-= ua =
characterization-of-=-with-axioms ua
∞-magma.sns-data
(λ X s → is-set X)
(λ X s → being-set-is-prop (univalence-gives-funext ua))
module pointed-type {𝓤 : Universe} where
open sip
Pointed : 𝓤 ̇ → 𝓤 ̇
Pointed X = X
sns-data : SNS Pointed 𝓤
sns-data = (ι , ρ , θ)
where
ι : (A B : Σ Pointed) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ̇
ι (X , x₀) (Y , y₀) (f , _) = (f x₀ = y₀)
ρ : (A : Σ Pointed) → ι A A (≃-refl ⟨ A ⟩)
ρ (X , x₀) = 𝓻𝓮𝒻𝓵 x₀
θ : {X : 𝓤 ̇ } (x₀ x₁ : Pointed X) → is-equiv (canonical-map ι ρ x₀ x₁)
θ x₀ x₁ = equiv-closed-under-∼ _ _ (id-is-equiv (x₀ = x₁)) h
where
h : canonical-map ι ρ x₀ x₁ ∼ -id (x₀ = x₁)
h (refl {x₀}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 x₀)
_≅_ : Σ Pointed → Σ Pointed → 𝓤 ̇
(X , x₀) ≅ (Y , y₀) = Σ f ꞉ (X → Y), is-equiv f × (f x₀ = y₀)
characterization-of-pointed-type-= : is-univalent 𝓤
→ (A B : Σ Pointed)
→ (A = B) ≃ (A ≅ B)
characterization-of-pointed-type-= ua = characterization-of-= ua sns-data
module pointed-∞-magma {𝓤 : Universe} where
open sip-join
∞-Magma· : 𝓤 ⁺ ̇
∞-Magma· = Σ X ꞉ 𝓤 ̇ , (X → X → X) × X
_≅_ : ∞-Magma· → ∞-Magma· → 𝓤 ̇
(X , _·_ , x₀) ≅ (Y , _*_ , y₀) =
Σ f ꞉ (X → Y), is-equiv f
× ((λ x x' → f (x · x')) = (λ x x' → f x * f x'))
× (f x₀ = y₀)
characterization-of-pointed-magma-= : is-univalent 𝓤
→ (A B : ∞-Magma·)
→ (A = B) ≃ (A ≅ B)
characterization-of-pointed-magma-= ua = characterization-of-join-= ua
∞-magma.sns-data
pointed-type.sns-data
module monoid {𝓤 : Universe} where
open sip
open sip-join
open sip-with-axioms
monoid-structure : 𝓤 ̇ → 𝓤 ̇
monoid-structure X = (X → X → X) × X
monoid-axioms : (X : 𝓤 ̇ ) → monoid-structure X → 𝓤 ̇
monoid-axioms X (_·_ , e) = is-set X
× left-neutral e _·_
× right-neutral e _·_
× associative _·_
Monoid : 𝓤 ⁺ ̇
Monoid = Σ X ꞉ 𝓤 ̇ , Σ s ꞉ monoid-structure X , monoid-axioms X s
monoid-axioms-is-prop : funext 𝓤 𝓤
→ (X : 𝓤 ̇ ) (s : monoid-structure X)
→ is-prop (monoid-axioms X s)
monoid-axioms-is-prop fe X (_·_ , e) s = γ s
where
i : is-set X
i = pr₁ s
γ : is-prop (monoid-axioms X (_·_ , e))
γ = ×-is-prop
(being-set-is-prop fe)
(×-is-prop
(Π-is-prop fe
(λ x → i {e · x} {x}))
(×-is-prop
(Π-is-prop fe
(λ x → i {x · e} {x}))
(Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → Π-is-prop fe
(λ z → i {(x · y) · z} {x · (y · z)}))))))
sns-data : funext 𝓤 𝓤
→ SNS (λ X → Σ s ꞉ monoid-structure X , monoid-axioms X s) 𝓤
sns-data fe = add-axioms
monoid-axioms (monoid-axioms-is-prop fe)
(join
∞-magma.sns-data
pointed-type.sns-data)
_≅_ : Monoid → Monoid → 𝓤 ̇
(X , (_·_ , d) , _) ≅ (Y , (_*_ , e) , _) =
Σ f ꞉ (X → Y), is-equiv f
× ((λ x x' → f (x · x')) = (λ x x' → f x * f x'))
× (f d = e)
characterization-of-monoid-= : is-univalent 𝓤
→ (A B : Monoid)
→ (A = B) ≃ (A ≅ B)
characterization-of-monoid-= ua = characterization-of-= ua
(sns-data (univalence-gives-funext ua))
module associative-∞-magma
{𝓤 : Universe}
(ua : is-univalent 𝓤)
where
abstract
fe : funext 𝓤 𝓤
fe = univalence-gives-funext ua
∞-amagma-structure : 𝓤 ̇ → 𝓤 ̇
∞-amagma-structure X = Σ _·_ ꞉ (X → X → X), (associative _·_)
∞-aMagma : 𝓤 ⁺ ̇
∞-aMagma = Σ X ꞉ 𝓤 ̇ , ∞-amagma-structure X
homomorphic : {X Y : 𝓤 ̇ } → (X → X → X) → (Y → Y → Y) → (X → Y) → 𝓤 ̇
homomorphic _·_ _*_ f = (λ x y → f (x · y)) = (λ x y → f x * f y)
respect-assoc : {X A : 𝓤 ̇ } (_·_ : X → X → X) (_*_ : A → A → A)
→ associative _·_ → associative _*_
→ (f : X → A) → homomorphic _·_ _*_ f → 𝓤 ̇
respect-assoc _·_ _*_ α β f h = fα = βf
where
l = λ x y z → f ((x · y) · z) =⟨ ap (λ - → - (x · y) z) h ⟩
f (x · y) * f z =⟨ ap (λ - → - x y * f z) h ⟩
(f x * f y) * f z ∎
r = λ x y z → f (x · (y · z)) =⟨ ap (λ - → - x (y · z)) h ⟩
f x * f (y · z) =⟨ ap (λ - → f x * - y z) h ⟩
f x * (f y * f z) ∎
fα βf : ∀ x y z → (f x * f y) * f z = f x * (f y * f z)
fα x y z = (l x y z)⁻¹ ∙ ap f (α x y z) ∙ r x y z
βf x y z = β (f x) (f y) (f z)
remark : {X : 𝓤 ̇ } (_·_ : X → X → X) (α β : associative _·_ )
→ respect-assoc _·_ _·_ α β id (𝓻𝓮𝒻𝓵 _·_)
= ((λ x y z → 𝓻𝓮𝒻𝓵 ((x · y) · z) ∙ ap id (α x y z)) = β)
remark _·_ α β = refl
open sip hiding (homomorphic)
sns-data : SNS ∞-amagma-structure 𝓤
sns-data = (ι , ρ , θ)
where
ι : (𝓧 𝓐 : ∞-aMagma) → ⟨ 𝓧 ⟩ ≃ ⟨ 𝓐 ⟩ → 𝓤 ̇
ι (X , _·_ , α) (A , _*_ , β) (f , i) = Σ h ꞉ homomorphic _·_ _*_ f
, respect-assoc _·_ _*_ α β f h
ρ : (𝓧 : ∞-aMagma) → ι 𝓧 𝓧 (≃-refl ⟨ 𝓧 ⟩)
ρ (X , _·_ , α) = h , p
where
h : homomorphic _·_ _·_ id
h = 𝓻𝓮𝒻𝓵 _·_
q : ∀ x y z → 𝓻𝓮𝒻𝓵 ((x · y) · z) ∙ ap id (α x y z) = α x y z
q x y z = refl-left-neutral ∙ ap-id-is-id (α x y z)
p : (λ x y z → 𝓻𝓮𝒻𝓵 ((x · y) · z) ∙ ap id (α x y z)) = α
p = dfunext fe (λ x → dfunext fe (λ y → dfunext fe (λ z → q x y z)))
u : (X : 𝓤 ̇ ) → ∀ s → ∃! t ꞉ ∞-amagma-structure X , ι (X , s) (X , t) (≃-refl X)
u X (_·_ , α) = c , φ
where
c : Σ t ꞉ ∞-amagma-structure X , ι (X , _·_ , α) (X , t) (≃-refl X)
c = (_·_ , α) , ρ (X , _·_ , α)
φ : (σ : Σ t ꞉ ∞-amagma-structure X , ι (X , _·_ , α) (X , t) (≃-refl X)) → c = σ
φ ((_·_ , β) , refl {_·_} , k) = γ
where
a : associative _·_
a x y z = 𝓻𝓮𝒻𝓵 ((x · y) · z) ∙ ap id (α x y z)
g : singleton-type a → Σ t ꞉ ∞-amagma-structure X , ι (X , _·_ , α) (X , t) (≃-refl X)
g (β , k) = (_·_ , β) , (𝓻𝓮𝒻𝓵 _·_) , k
i : is-prop (singleton-type a)
i = singletons-are-props (singleton-types-are-singletons a)
q : α , pr₂ (ρ (X , _·_ , α)) = β , k
q = i _ _
γ : c = (_·_ , β) , 𝓻𝓮𝒻𝓵 _·_ , k
γ = ap g q
θ : {X : 𝓤 ̇ } (s t : ∞-amagma-structure X) → is-equiv (canonical-map ι ρ s t)
θ {X} s = Yoneda-Theorem-forth s (canonical-map ι ρ s) (u X s)
_≅_ : ∞-aMagma → ∞-aMagma → 𝓤 ̇
(X , _·_ , α) ≅ (Y , _*_ , β) = Σ f ꞉ (X → Y)
, is-equiv f
× (Σ h ꞉ homomorphic _·_ _*_ f
, respect-assoc _·_ _*_ α β f h)
characterization-of-∞-aMagma-= : (A B : ∞-aMagma) → (A = B) ≃ (A ≅ B)
characterization-of-∞-aMagma-= = characterization-of-= ua sns-data
module group {𝓤 : Universe} where
open sip
open sip-with-axioms
open monoid {𝓤} hiding (sns-data ; _≅_)
group-structure : 𝓤 ̇ → 𝓤 ̇
group-structure X = Σ s ꞉ monoid-structure X , monoid-axioms X s
group-axiom : (X : 𝓤 ̇ ) → monoid-structure X → 𝓤 ̇
group-axiom X (_·_ , e) = (x : X) → Σ x' ꞉ X , (x · x' = e) × (x' · x = e)
Group : 𝓤 ⁺ ̇
Group = Σ X ꞉ 𝓤 ̇ , Σ ((_·_ , e) , a) ꞉ group-structure X , group-axiom X (_·_ , e)
inv-lemma : (X : 𝓤 ̇ ) (_·_ : X → X → X) (e : X)
→ monoid-axioms X (_·_ , e)
→ (x y z : X)
→ (y · x) = e
→ (x · z) = e
→ y = z
inv-lemma X _·_ e (s , l , r , a) x y z q p =
y =⟨ (r y)⁻¹ ⟩
(y · e) =⟨ ap (y ·_) (p ⁻¹) ⟩
(y · (x · z)) =⟨ (a y x z)⁻¹ ⟩
((y · x) · z) =⟨ ap (_· z) q ⟩
(e · z) =⟨ l z ⟩
z ∎
group-axiom-is-prop : funext 𝓤 𝓤
→ (X : 𝓤 ̇ )
→ (s : group-structure X)
→ is-prop (group-axiom X (pr₁ s))
group-axiom-is-prop fe X ((_·_ , e) , (s , l , r , a)) = γ
where
i : (x : X) → is-prop (Σ x' ꞉ X , (x · x' = e) × (x' · x = e))
i x (y , _ , q) (z , p , _) = u
where
t : y = z
t = inv-lemma X _·_ e (s , l , r , a) x y z q p
u : (y , _ , q) = (z , p , _)
u = to-subtype-= (λ x' → ×-is-prop s s) t
γ : is-prop (group-axiom X (_·_ , e))
γ = Π-is-prop fe i
sns-data : funext 𝓤 𝓤
→ SNS (λ X → Σ s ꞉ group-structure X , group-axiom X (pr₁ s)) 𝓤
sns-data fe = add-axioms
(λ X s → group-axiom X (pr₁ s)) (group-axiom-is-prop fe)
(monoid.sns-data fe)
_≅_ : Group → Group → 𝓤 ̇
(X , ((_·_ , d) , _) , _) ≅ (Y , ((_*_ , e) , _) , _) =
Σ f ꞉ (X → Y), is-equiv f
× ((λ x x' → f (x · x')) = (λ x x' → f x * f x'))
× (f d = e)
characterization-of-group-= : is-univalent 𝓤 → (A B : Group) → (A = B) ≃ (A ≅ B)
characterization-of-group-= ua = characterization-of-= ua
(sns-data (univalence-gives-funext ua))
_≅'_ : Group → Group → 𝓤 ̇
(X , ((_·_ , d) , _) , _) ≅' (Y , ((_*_ , e) , _) , _) =
Σ f ꞉ (X → Y), is-equiv f
× ((λ x x' → f (x · x')) = (λ x x' → f x * f x'))
group-structure-of : (G : Group) → group-structure ⟨ G ⟩
group-structure-of (X , ((_·_ , e) , i , l , r , a) , γ) = (_·_ , e) , i , l , r , a
monoid-structure-of : (G : Group) → monoid-structure ⟨ G ⟩
monoid-structure-of (X , ((_·_ , e) , i , l , r , a) , γ) = (_·_ , e)
monoid-axioms-of : (G : Group) → monoid-axioms ⟨ G ⟩ (monoid-structure-of G)
monoid-axioms-of (X , ((_·_ , e) , i , l , r , a) , γ) = i , l , r , a
multiplication : (G : Group) → ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩
multiplication (X , ((_·_ , e) , i , l , r , a) , γ) = _·_
syntax multiplication G x y = x ·⟨ G ⟩ y
unit : (G : Group) → ⟨ G ⟩
unit (X , ((_·_ , e) , i , l , r , a) , γ) = e
group-is-set : (G : Group)
→ is-set ⟨ G ⟩
group-is-set (X , ((_·_ , e) , i , l , r , a) , γ) = i
unit-left : (G : Group) (x : ⟨ G ⟩)
→ unit G ·⟨ G ⟩ x = x
unit-left (X , ((_·_ , e) , i , l , r , a) , γ) x = l x
unit-right : (G : Group) (x : ⟨ G ⟩)
→ x ·⟨ G ⟩ unit G = x
unit-right (X , ((_·_ , e) , i , l , r , a) , γ) x = r x
assoc : (G : Group) (x y z : ⟨ G ⟩)
→ (x ·⟨ G ⟩ y) ·⟨ G ⟩ z = x ·⟨ G ⟩ (y ·⟨ G ⟩ z)
assoc (X , ((_·_ , e) , i , l , r , a) , γ) = a
inv : (G : Group) → ⟨ G ⟩ → ⟨ G ⟩
inv (X , ((_·_ , e) , i , l , r , a) , γ) x = pr₁ (γ x)
inv-left : (G : Group) (x : ⟨ G ⟩)
→ inv G x ·⟨ G ⟩ x = unit G
inv-left (X , ((_·_ , e) , i , l , r , a) , γ) x = pr₂ (pr₂ (γ x))
inv-right : (G : Group) (x : ⟨ G ⟩)
→ x ·⟨ G ⟩ inv G x = unit G
inv-right (X , ((_·_ , e) , i , l , r , a) , γ) x = pr₁ (pr₂ (γ x))
preserves-multiplication : (G H : Group) → (⟨ G ⟩ → ⟨ H ⟩) → 𝓤 ̇
preserves-multiplication G H f = (λ (x y : ⟨ G ⟩) → f (x ·⟨ G ⟩ y))
= (λ (x y : ⟨ G ⟩) → f x ·⟨ H ⟩ f y)
preserves-unit : (G H : Group) → (⟨ G ⟩ → ⟨ H ⟩) → 𝓤 ̇
preserves-unit G H f = f (unit G) = unit H
idempotent-is-unit : (G : Group) (x : ⟨ G ⟩)
→ x ·⟨ G ⟩ x = x
→ x = unit G
idempotent-is-unit G x p = γ
where
x' = inv G x
γ = x =⟨ (unit-left G x)⁻¹ ⟩
unit G ·⟨ G ⟩ x =⟨ (ap (λ - → - ·⟨ G ⟩ x) (inv-left G x))⁻¹ ⟩
(x' ·⟨ G ⟩ x) ·⟨ G ⟩ x =⟨ assoc G x' x x ⟩
x' ·⟨ G ⟩ (x ·⟨ G ⟩ x) =⟨ ap (λ - → x' ·⟨ G ⟩ -) p ⟩
x' ·⟨ G ⟩ x =⟨ inv-left G x ⟩
unit G ∎
unit-preservation-lemma : (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩)
→ preserves-multiplication G H f
→ preserves-unit G H f
unit-preservation-lemma G H f m = idempotent-is-unit H e p
where
e = f (unit G)
p = e ·⟨ H ⟩ e =⟨ ap (λ - → - (unit G) (unit G)) (m ⁻¹) ⟩
f (unit G ·⟨ G ⟩ unit G) =⟨ ap f (unit-left G (unit G)) ⟩
e ∎
inv-Lemma : (G : Group) (x y z : ⟨ G ⟩)
→ (y ·⟨ G ⟩ x) = unit G
→ (x ·⟨ G ⟩ z) = unit G
→ y = z
inv-Lemma G = inv-lemma ⟨ G ⟩ (multiplication G) (unit G) (monoid-axioms-of G)
one-left-inv : (G : Group) (x x' : ⟨ G ⟩)
→ (x' ·⟨ G ⟩ x) = unit G
→ x' = inv G x
one-left-inv G x x' p = inv-Lemma G x x' (inv G x) p (inv-right G x)
one-right-inv : (G : Group) (x x' : ⟨ G ⟩)
→ (x ·⟨ G ⟩ x') = unit G
→ x' = inv G x
one-right-inv G x x' p = (inv-Lemma G x (inv G x) x' (inv-left G x) p)⁻¹
preserves-inv : (G H : Group) → (⟨ G ⟩ → ⟨ H ⟩) → 𝓤 ̇
preserves-inv G H f = (x : ⟨ G ⟩) → f (inv G x) = inv H (f x)
inv-preservation-lemma : (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩)
→ preserves-multiplication G H f
→ preserves-inv G H f
inv-preservation-lemma G H f m x = γ
where
p = f (inv G x) ·⟨ H ⟩ f x =⟨ (ap (λ - → - (inv G x) x) m)⁻¹ ⟩
f (inv G x ·⟨ G ⟩ x) =⟨ ap f (inv-left G x) ⟩
f (unit G) =⟨ unit-preservation-lemma G H f m ⟩
unit H ∎
γ : f (inv G x) = inv H (f x)
γ = one-left-inv H (f x) (f (inv G x)) p
is-homomorphism : (G H : Group) → (⟨ G ⟩ → ⟨ H ⟩) → 𝓤 ̇
is-homomorphism G H f = preserves-multiplication G H f
× preserves-unit G H f
preservation-of-mult-is-prop : funext 𝓤 𝓤
→ (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩)
→ is-prop (preserves-multiplication G H f)
preservation-of-mult-is-prop fe G H f = j
where
j : is-prop (preserves-multiplication G H f)
j = Π-is-set fe (λ _ → Π-is-set fe (λ _ → group-is-set H))
being-homomorphism-is-prop : funext 𝓤 𝓤
→ (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩)
→ is-prop (is-homomorphism G H f)
being-homomorphism-is-prop fe G H f = i
where
i : is-prop (is-homomorphism G H f)
i = ×-is-prop
(preservation-of-mult-is-prop fe G H f)
(group-is-set H)
notions-of-homomorphism-agree : funext 𝓤 𝓤
→ (G H : Group) (f : ⟨ G ⟩ → ⟨ H ⟩)
→ is-homomorphism G H f
≃ preserves-multiplication G H f
notions-of-homomorphism-agree fe G H f = γ
where
α : is-homomorphism G H f → preserves-multiplication G H f
α = pr₁
β : preserves-multiplication G H f → is-homomorphism G H f
β m = m , unit-preservation-lemma G H f m
γ : is-homomorphism G H f ≃ preserves-multiplication G H f
γ = logically-equivalent-props-are-equivalent
(being-homomorphism-is-prop fe G H f)
(preservation-of-mult-is-prop fe G H f)
α
β
≅-agreement : funext 𝓤 𝓤 → (G H : Group) → (G ≅ H) ≃ (G ≅' H)
≅-agreement fe G H = Σ-cong (λ f → Σ-cong (λ _ → notions-of-homomorphism-agree fe G H f))
forget-unit-preservation : (G H : Group) → (G ≅ H) → (G ≅' H)
forget-unit-preservation G H (f , e , m , _) = f , e , m
NB : (fe : funext 𝓤 𝓤)
→ (G H : Group) → ⌜ ≅-agreement fe G H ⌝ = forget-unit-preservation G H
NB fe G H = refl
forget-unit-preservation-is-equiv : funext 𝓤 𝓤
→ (G H : Group)
→ is-equiv (forget-unit-preservation G H)
forget-unit-preservation-is-equiv fe G H = ⌜⌝-is-equiv (≅-agreement fe G H)
module subgroup
(𝓤 : Universe)
(ua : Univalence)
where
fe : ∀ {𝓥} {𝓦} → funext 𝓥 𝓦
fe {𝓥} {𝓦} = univalence-gives-funext' 𝓥 𝓦 (ua 𝓥) (ua (𝓥 ⊔ 𝓦))
open sip
open monoid {𝓤} hiding (sns-data ; _≅_)
open group {𝓤}
open import UF.Powerset
open import UF.Classifiers
module ambient (G : Group) where
_·_ : ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩
x · y = x ·⟨ G ⟩ y
infixl 42 _·_
group-closed : (⟨ G ⟩ → 𝓥 ̇ ) → 𝓤 ⊔ 𝓥 ̇
group-closed 𝓐 = 𝓐 (unit G)
× ((x y : ⟨ G ⟩) → 𝓐 x → 𝓐 y → 𝓐 (x · y))
× ((x : ⟨ G ⟩) → 𝓐 x → 𝓐 (inv G x))
Subgroups : 𝓤 ⁺ ̇
Subgroups = Σ A ꞉ 𝓟 ⟨ G ⟩ , group-closed (_∈ A)
⟪_⟫ : Subgroups → 𝓟 ⟨ G ⟩
⟪ A , u , c , ι ⟫ = A
being-group-closed-subset-is-prop : (A : 𝓟 ⟨ G ⟩)
→ is-prop (group-closed (_∈ A))
being-group-closed-subset-is-prop A = ×-is-prop
(∈-is-prop A (unit G))
(×-is-prop
(Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → Π-is-prop fe
(λ _ → Π-is-prop fe
(λ _ → ∈-is-prop A (x · y))))))
(Π-is-prop fe
(λ x → Π-is-prop fe
(λ _ → ∈-is-prop A (inv G x)))))
⟪⟫-is-embedding : is-embedding ⟪_⟫
⟪⟫-is-embedding = pr₁-is-embedding being-group-closed-subset-is-prop
ap-⟪⟫ : (S T : Subgroups) → S = T → ⟪ S ⟫ = ⟪ T ⟫
ap-⟪⟫ S T = ap ⟪_⟫
ap-⟪⟫-is-equiv : (S T : Subgroups) → is-equiv (ap-⟪⟫ S T)
ap-⟪⟫-is-equiv = embedding-embedding' ⟪_⟫ ⟪⟫-is-embedding
subgroups-form-a-set : is-set Subgroups
subgroups-form-a-set {S} {T} = equiv-to-prop
(ap-⟪⟫ S T , ap-⟪⟫-is-equiv S T)
(𝓟-is-set ua)
subgroup-equality : (S T : Subgroups)
→ (S = T)
≃ ((x : ⟨ G ⟩) → (x ∈ ⟪ S ⟫) ⇔ (x ∈ ⟪ T ⟫))
subgroup-equality S T = γ
where
f : S = T → (x : ⟨ G ⟩) → x ∈ ⟪ S ⟫ ⇔ x ∈ ⟪ T ⟫
f p x = transport (λ - → x ∈ ⟪ - ⟫) p , transport (λ - → x ∈ ⟪ - ⟫) (p ⁻¹)
h : ((x : ⟨ G ⟩) → x ∈ ⟪ S ⟫ ⇔ x ∈ ⟪ T ⟫) → ⟪ S ⟫ = ⟪ T ⟫
h φ = subset-extensionality' ua α β
where
α : ⟪ S ⟫ ⊆ ⟪ T ⟫
α x = lr-implication (φ x)
β : ⟪ T ⟫ ⊆ ⟪ S ⟫
β x = rl-implication (φ x)
g : ((x : ⟨ G ⟩) → x ∈ ⟪ S ⟫ ⇔ x ∈ ⟪ T ⟫) → S = T
g = inverse (ap-⟪⟫ S T) (ap-⟪⟫-is-equiv S T) ∘ h
γ : (S = T) ≃ ((x : ⟨ G ⟩) → x ∈ ⟪ S ⟫ ⇔ x ∈ ⟪ T ⟫)
γ = logically-equivalent-props-are-equivalent
subgroups-form-a-set
(Π-is-prop fe
(λ x → ×-is-prop
(Π-is-prop fe (λ _ → ∈-is-prop ⟪ T ⟫ x))
(Π-is-prop fe (λ _ → ∈-is-prop ⟪ S ⟫ x)))) f g
T : 𝓤 ̇ → 𝓤 ̇
T X = Σ ((_·_ , e) , a) ꞉ group-structure X , group-axiom X (_·_ , e)
module _ {X : 𝓤 ̇ } (h : X → ⟨ G ⟩) (e : is-embedding h) where
private
h-lc : left-cancellable h
h-lc = embeddings-are-lc h e
having-group-closed-fiber-is-prop : is-prop (group-closed (fiber h))
having-group-closed-fiber-is-prop = being-group-closed-subset-is-prop
(λ x → (fiber h x , e x))
at-most-one-homomorphic-structure : is-prop (Σ τ ꞉ T X , is-homomorphism (X , τ) G h)
at-most-one-homomorphic-structure
((((_*_ , unitH) , maxioms) , gaxiom) , (pmult , punit))
((((_*'_ , unitH') , maxioms') , gaxiom') , (pmult' , punit'))
= γ
where
τ τ' : T X
τ = ((_*_ , unitH) , maxioms) , gaxiom
τ' = ((_*'_ , unitH') , maxioms') , gaxiom'
i : is-homomorphism (X , τ) G h
i = (pmult , punit)
i' : is-homomorphism (X , τ') G h
i' = (pmult' , punit')
p : _*_ = _*'_
p = dfunext fe (λ x → dfunext fe (λ y → h-lc (h (x * y) =⟨ ap (λ - → - x y) pmult ⟩
h x · h y =⟨ (ap (λ - → - x y) pmult')⁻¹ ⟩
h (x *' y) ∎)))
q : unitH = unitH'
q = h-lc (h unitH =⟨ punit ⟩
unit G =⟨ punit' ⁻¹ ⟩
h unitH' ∎)
r : (_*_ , unitH) = (_*'_ , unitH')
r = to-×-= p q
δ : τ = τ'
δ = to-subtype-=
(group-axiom-is-prop fe X)
(to-subtype-= (monoid-axioms-is-prop fe X) r)
γ : (τ , i) = (τ' , i')
γ = to-subtype-= (λ τ → being-homomorphism-is-prop fe (X , τ) G h) δ
group-closed-fiber-gives-homomorphic-structure : funext 𝓤 𝓤
→ group-closed (fiber h)
→ (Σ τ ꞉ T X , is-homomorphism (X , τ) G h)
group-closed-fiber-gives-homomorphic-structure fe (unitc , mulc , invc) = τ , i
where
φ : (x : X) → fiber h (h x)
φ x = (x , 𝓻𝓮𝒻𝓵 (h x))
unitH : X
unitH = fiber-point unitc
_*_ : X → X → X
x * y = fiber-point (mulc (h x) (h y) (φ x) (φ y))
invH : X → X
invH x = fiber-point (invc (h x) (φ x))
pmul : (x y : X) → h (x * y) = h x · h y
pmul x y = fiber-identification (mulc (h x) (h y) (φ x) (φ y))
punit : h unitH = unit G
punit = fiber-identification unitc
pinv : (x : X) → h (invH x) = inv G (h x)
pinv x = fiber-identification (invc (h x) (φ x))
unitH-left : (x : X) → unitH * x = x
unitH-left x = h-lc (h (unitH * x) =⟨ pmul unitH x ⟩
h unitH · h x =⟨ ap (_· h x) punit ⟩
unit G · h x =⟨ unit-left G (h x) ⟩
h x ∎)
unitH-right : (x : X) → x * unitH = x
unitH-right x = h-lc (h (x * unitH) =⟨ pmul x unitH ⟩
h x · h unitH =⟨ ap (h x ·_) punit ⟩
h x · unit G =⟨ unit-right G (h x) ⟩
h x ∎)
assocH : (x y z : X) → ((x * y) * z) = (x * (y * z))
assocH x y z = h-lc (h ((x * y) * z) =⟨ pmul (x * y) z ⟩
h (x * y) · h z =⟨ ap (_· h z) (pmul x y) ⟩
(h x · h y) · h z =⟨ assoc G (h x) (h y) (h z) ⟩
h x · (h y · h z) =⟨ (ap (h x ·_) (pmul y z))⁻¹ ⟩
h x · h (y * z) =⟨ (pmul x (y * z))⁻¹ ⟩
h (x * (y * z)) ∎)
group-axiomH : (x : X) → Σ x' ꞉ X , (x * x' = unitH) × (x' * x = unitH)
group-axiomH x = invH x ,
h-lc (h (x * invH x) =⟨ pmul x (invH x) ⟩
h x · h (invH x) =⟨ ap (h x ·_) (pinv x) ⟩
h x · inv G (h x) =⟨ inv-right G (h x) ⟩
unit G =⟨ punit ⁻¹ ⟩
h unitH ∎),
h-lc ((h (invH x * x) =⟨ pmul (invH x) x ⟩
h (invH x) · h x =⟨ ap (_· h x) (pinv x) ⟩
inv G (h x) · h x =⟨ inv-left G (h x) ⟩
unit G =⟨ punit ⁻¹ ⟩
h unitH ∎))
j : is-set X
j = subtypes-of-sets-are-sets h h-lc (group-is-set G)
τ : T X
τ = ((_*_ , unitH) , (j , unitH-left , unitH-right , assocH)) , group-axiomH
i : is-homomorphism (X , τ) G h
i = dfunext fe (λ x → dfunext fe (pmul x)) , punit
homomorphic-structure-gives-group-closed-fiber : (Σ τ ꞉ T X , is-homomorphism (X , τ) G h)
→ group-closed (fiber h)
homomorphic-structure-gives-group-closed-fiber
((((_*_ , unitH) , maxioms) , gaxiom) , (pmult , punit))
= (unitc , mulc , invc)
where
H : Group
H = X , ((_*_ , unitH) , maxioms) , gaxiom
unitc : fiber h (unit G)
unitc = unitH , punit
mulc : ((x y : ⟨ G ⟩) → fiber h x → fiber h y → fiber h (x · y))
mulc x y (a , p) (b , q) = (a * b) ,
(h (a * b) =⟨ ap (λ - → - a b) pmult ⟩
h a · h b =⟨ ap₂ (λ - -' → - · -') p q ⟩
x · y ∎)
invc : ((x : ⟨ G ⟩) → fiber h x → fiber h (inv G x))
invc x (a , p) = inv H a ,
(h (inv H a) =⟨ inv-preservation-lemma H G h pmult a ⟩
inv G (h a) =⟨ ap (inv G) p ⟩
inv G x ∎)
fiber-structure-lemma : funext 𝓤 𝓤
→ group-closed (fiber h)
≃ (Σ τ ꞉ T X , is-homomorphism (X , τ) G h)
fiber-structure-lemma fe = logically-equivalent-props-are-equivalent
having-group-closed-fiber-is-prop
at-most-one-homomorphic-structure
(group-closed-fiber-gives-homomorphic-structure fe)
homomorphic-structure-gives-group-closed-fiber
characterization-of-the-type-of-subgroups : Subgroups ≃ (Σ H ꞉ Group
, Σ h ꞉ (⟨ H ⟩ → ⟨ G ⟩)
, is-embedding h
× is-homomorphism H G h)
characterization-of-the-type-of-subgroups =
Subgroups ≃⟨ i ⟩
(Σ A ꞉ 𝓟 ⟨ G ⟩ , group-closed (_∈ A)) ≃⟨ ii ⟩
(Σ (X , h , e) ꞉ Subtypes ⟨ G ⟩ , group-closed (fiber h)) ≃⟨ iii ⟩
(Σ X ꞉ 𝓤 ̇ , Σ (h , e) ꞉ X ↪ ⟨ G ⟩ , group-closed (fiber h)) ≃⟨ iv ⟩
(Σ X ꞉ 𝓤 ̇ , Σ (h , e) ꞉ X ↪ ⟨ G ⟩ , Σ τ ꞉ T X , is-homomorphism (X , τ) G h) ≃⟨ v ⟩
(Σ X ꞉ 𝓤 ̇ , Σ h ꞉ (X → ⟨ G ⟩) , Σ e ꞉ is-embedding h , Σ τ ꞉ T X , is-homomorphism (X , τ) G h) ≃⟨ vi ⟩
(Σ X ꞉ 𝓤 ̇ , Σ h ꞉ (X → ⟨ G ⟩) , Σ τ ꞉ T X , Σ e ꞉ is-embedding h , is-homomorphism (X , τ) G h) ≃⟨ vii ⟩
(Σ X ꞉ 𝓤 ̇ , Σ τ ꞉ T X , Σ h ꞉ (X → ⟨ G ⟩) , is-embedding h × is-homomorphism (X , τ) G h) ≃⟨ viii ⟩
(Σ H ꞉ Group , Σ h ꞉ (⟨ H ⟩ → ⟨ G ⟩) , is-embedding h × is-homomorphism H G h) ■
where
open special-classifier-single-universe 𝓤
φ : Subtypes ⟨ G ⟩ → 𝓟 ⟨ G ⟩
φ = χ-special is-prop ⟨ G ⟩
j : is-equiv φ
j = χ-special-is-equiv (ua 𝓤) fe is-prop ⟨ G ⟩
i = ≃-refl Subgroups
ii = ≃-sym (Σ-change-of-variable (λ (A : 𝓟 ⟨ G ⟩) → group-closed (_∈ A)) φ j)
iii = Σ-assoc
iv = Σ-cong (λ X → Σ-cong (λ (h , e) → fiber-structure-lemma h e fe))
v = Σ-cong (λ X → Σ-assoc)
vi = Σ-cong (λ X → Σ-cong (λ h → Σ-flip))
vii = Σ-cong (λ X → Σ-flip)
viii = ≃-sym Σ-assoc
induced-group : Subgroups → Group
induced-group S = pr₁ (⌜ characterization-of-the-type-of-subgroups ⌝ S)
module ring {𝓤 : Universe} (ua : Univalence) where
open sip hiding (⟨_⟩)
open sip-with-axioms
open sip-join
fe : ∀ {𝓥} {𝓦} → funext 𝓥 𝓦
fe {𝓥} {𝓦} = univalence-gives-funext' 𝓥 𝓦 (ua 𝓥) (ua (𝓥 ⊔ 𝓦))
rng-structure : 𝓤 ̇ → 𝓤 ̇
rng-structure X = (X → X → X) × (X → X → X)
rng-axioms : (R : 𝓤 ̇ ) → rng-structure R → 𝓤 ̇
rng-axioms R (_+_ , _·_) = I × II × III × IV × V × VI × VII
where
I = is-set R
II = (x y z : R) → (x + y) + z = x + (y + z)
III = (x y : R) → x + y = y + x
IV = Σ O ꞉ R , ((x : R) → x + O = x) × ((x : R) → Σ x' ꞉ R , x + x' = O)
V = (x y z : R) → (x · y) · z = x · (y · z)
VI = (x y z : R) → x · (y + z) = (x · y) + (x · z)
VII = (x y z : R) → (y + z) · x = (y · x) + (z · x)
Rng : 𝓤 ⁺ ̇
Rng = Σ R ꞉ 𝓤 ̇ , Σ s ꞉ rng-structure R , rng-axioms R s
rng-axioms-is-prop : (R : 𝓤 ̇ ) (s : rng-structure R)
→ is-prop (rng-axioms R s)
rng-axioms-is-prop R (_+_ , _·_) = prop-criterion δ
where
δ : rng-axioms R (_+_ , _·_) → is-prop (rng-axioms R (_+_ , _·_))
δ (i , ii , iii , iv-vii) = γ
where
A = λ (O : R) → ((x : R) → x + O = x)
× ((x : R) → Σ x' ꞉ R , x + x' = O)
IV = Σ A
a : (O O' : R) → ((x : R) → x + O = x) → ((x : R) → x + O' = x) → O = O'
a O O' f f' = O =⟨ (f' O)⁻¹ ⟩
(O + O') =⟨ iii O O' ⟩
(O' + O) =⟨ f O' ⟩
O' ∎
b : (O : R) → is-prop ((x : R) → x + O = x)
b O = Π-is-prop fe (λ x → i {x + O} {x})
c : (O : R)
→ ((x : R) → x + O = x)
→ (x : R) → is-prop (Σ x' ꞉ R , x + x' = O)
c O f x (x' , p') (x'' , p'') = to-subtype-= (λ y → i {x + y} {O}) r
where
r : x' = x''
r = x' =⟨ (f x')⁻¹ ⟩
(x' + O) =⟨ ap (x' +_) (p'' ⁻¹) ⟩
(x' + (x + x'')) =⟨ (ii x' x x'')⁻¹ ⟩
((x' + x) + x'') =⟨ ap (_+ x'') (iii x' x) ⟩
((x + x') + x'') =⟨ ap (_+ x'') p' ⟩
(O + x'') =⟨ iii O x'' ⟩
(x'' + O) =⟨ f x'' ⟩
x'' ∎
d : (O : R) → is-prop (A O)
d O (f , g) = φ (f , g)
where
φ : is-prop (A O)
φ = ×-is-prop (b O) (Π-is-prop fe (λ x → c O f x))
IV-is-prop : is-prop IV
IV-is-prop (O , f , g) (O' , f' , g') = e
where
e : (O , f , g) = (O' , f' , g')
e = to-subtype-= d (a O O' f f')
γ : is-prop (rng-axioms R (_+_ , _·_))
γ = ×-is-prop
(being-set-is-prop fe)
(×-is-prop
(Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → Π-is-prop fe
λ z → i {(x + y) + z} {x + (y + z)})))
(×-is-prop
(Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → i {x + y} {y + x})))
(×-is-prop
IV-is-prop
(×-is-prop
(Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → Π-is-prop fe
(λ z → i {(x · y) · z} {x · (y · z)}))))
(×-is-prop
(Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → Π-is-prop fe
(λ z → i {x · (y + z)} {(x · y) + (x · z)}))))
(Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → Π-is-prop fe
(λ z → i {(y + z) · x} {(y · x) + (z · x)})))))))))
_≅[Rng]_ : Rng → Rng → 𝓤 ̇
(R , (_+_ , _·_) , _) ≅[Rng] (R' , (_+'_ , _·'_) , _) =
Σ f ꞉ (R → R')
, is-equiv f
× ((λ x y → f (x + y)) = (λ x y → f x +' f y))
× ((λ x y → f (x · y)) = (λ x y → f x ·' f y))
characterization-of-rng-= : (𝓡 𝓡' : Rng) → (𝓡 = 𝓡') ≃ (𝓡 ≅[Rng] 𝓡')
characterization-of-rng-= = characterization-of-= (ua 𝓤)
(add-axioms
rng-axioms
rng-axioms-is-prop
(join
∞-magma.sns-data
∞-magma.sns-data))
⟨_⟩ : (𝓡 : Rng) → 𝓤 ̇
⟨ R , _ ⟩ = R
ring-structure : 𝓤 ̇ → 𝓤 ̇
ring-structure X = X × rng-structure X
ring-axioms : (R : 𝓤 ̇ ) → ring-structure R → 𝓤 ̇
ring-axioms R (𝟏 , _+_ , _·_) = rng-axioms R (_+_ , _·_) × VIII
where
VIII = (x : R) → (x · 𝟏 = x) × (𝟏 · x = x)
ring-axioms-is-prop : (R : 𝓤 ̇ ) (s : ring-structure R)
→ is-prop (ring-axioms R s)
ring-axioms-is-prop R (𝟏 , _+_ , _·_) ((i , ii-vii) , viii) = γ ((i , ii-vii) , viii)
where
γ : is-prop (ring-axioms R (𝟏 , _+_ , _·_))
γ = ×-is-prop
(rng-axioms-is-prop R (_+_ , _·_))
(Π-is-prop fe (λ x → ×-is-prop (i {x · 𝟏} {x}) (i {𝟏 · x} {x})))
Ring : 𝓤 ⁺ ̇
Ring = Σ R ꞉ 𝓤 ̇ , Σ s ꞉ ring-structure R , ring-axioms R s
_≅[Ring]_ : Ring → Ring → 𝓤 ̇
(R , (𝟏 , _+_ , _·_) , _) ≅[Ring] (R' , (𝟏' , _+'_ , _·'_) , _) =
Σ f ꞉ (R → R')
, is-equiv f
× (f 𝟏 = 𝟏')
× ((λ x y → f (x + y)) = (λ x y → f x +' f y))
× ((λ x y → f (x · y)) = (λ x y → f x ·' f y))
characterization-of-ring-= : (𝓡 𝓡' : Ring) → (𝓡 = 𝓡') ≃ (𝓡 ≅[Ring] 𝓡')
characterization-of-ring-= = sip.characterization-of-= (ua 𝓤)
(sip-with-axioms.add-axioms
ring-axioms
ring-axioms-is-prop
(sip-join.join
pointed-type.sns-data
(join
∞-magma.sns-data
∞-magma.sns-data)))
is-commutative : Rng → 𝓤 ̇
is-commutative (R , (_+_ , _·_) , _) = (x y : R) → x · y = y · x
being-commutative-is-prop : (𝓡 : Rng) → is-prop (is-commutative 𝓡)
being-commutative-is-prop (R , (_+_ , _·_) , i , ii-vii) =
Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → i {x · y} {y · x}))
open import UF.Powerset
is-ideal : (𝓡 : Rng) → 𝓟 ⟨ 𝓡 ⟩ → 𝓤 ̇
is-ideal (R , (_+_ , _·_) , _) I = (x y : R) → (x ∈ I → y ∈ I → (x + y) ∈ I)
× (x ∈ I → (x · y) ∈ I)
× (y ∈ I → (x · y) ∈ I)
is-local : Rng → 𝓤 ⁺ ̇
is-local 𝓡 = ∃! I ꞉ 𝓟 ⟨ 𝓡 ⟩ , (is-ideal 𝓡 I → (J : 𝓟 ⟨ 𝓡 ⟩) → is-ideal 𝓡 J → J ⊆ I)
being-local-is-prop : (𝓡 : Rng) → is-prop (is-local 𝓡)
being-local-is-prop 𝓡 = ∃!-is-prop fe
open import UF.PropTrunc
module _ (pt : propositional-truncations-exist) where
open propositional-truncations-exist pt public
open PropositionalTruncation pt
open import Naturals.Order
is-noetherian : (𝓡 : Rng) → 𝓤 ⁺ ̇
is-noetherian 𝓡 = (I : ℕ → 𝓟 ⟨ 𝓡 ⟩)
→ ((n : ℕ) → is-ideal 𝓡 (I n))
→ ((n : ℕ) → I n ⊆ I (succ n))
→ ∃ m ꞉ ℕ , ((n : ℕ) → m ≤ n → I m = I n)
NoetherianRng : 𝓤 ⁺ ̇
NoetherianRng = Σ 𝓡 ꞉ Rng , is-noetherian 𝓡
being-noetherian-is-prop : (𝓡 : Rng) → is-prop (is-noetherian 𝓡)
being-noetherian-is-prop 𝓡 = Π-is-prop fe
(λ I → Π-is-prop fe
(λ _ → Π-is-prop fe
(λ _ → ∃-is-prop)))
forget-Noether : NoetherianRng → Rng
forget-Noether (𝓡 , _) = 𝓡
forget-Noether-is-embedding : is-embedding forget-Noether
forget-Noether-is-embedding = pr₁-is-embedding being-noetherian-is-prop
_≅[NoetherianRng]_ : NoetherianRng → NoetherianRng → 𝓤 ̇
((R , (_+_ , _·_) , _) , _) ≅[NoetherianRng] ((R' , (_+'_ , _·'_) , _) , _) =
Σ f ꞉ (R → R')
, is-equiv f
× ((λ x y → f (x + y)) = (λ x y → f x +' f y))
× ((λ x y → f (x · y)) = (λ x y → f x ·' f y))
NB : (𝓡 𝓡' : NoetherianRng)
→ (𝓡 ≅[NoetherianRng] 𝓡') = (forget-Noether 𝓡 ≅[Rng] forget-Noether 𝓡')
NB 𝓡 𝓡' = refl
characterization-of-nrng-= : (𝓡 𝓡' : NoetherianRng)
→ (𝓡 = 𝓡') ≃ (𝓡 ≅[NoetherianRng] 𝓡')
characterization-of-nrng-= 𝓡 𝓡' =
(𝓡 = 𝓡') ≃⟨ i ⟩
(forget-Noether 𝓡 = forget-Noether 𝓡') ≃⟨ ii ⟩
(𝓡 ≅[NoetherianRng] 𝓡') ■
where
i = ≃-sym (embedding-criterion-converse forget-Noether
forget-Noether-is-embedding 𝓡 𝓡')
ii = characterization-of-rng-= (forget-Noether 𝓡) (forget-Noether 𝓡')
isomorphic-NoetherianRng-transport :
(A : NoetherianRng → 𝓥 ̇ )
→ (𝓡 𝓡' : NoetherianRng) → 𝓡 ≅[NoetherianRng] 𝓡' → A 𝓡 → A 𝓡'
isomorphic-NoetherianRng-transport A 𝓡 𝓡' i a = a'
where
p : 𝓡 = 𝓡'
p = ⌜ characterization-of-nrng-= 𝓡 𝓡' ⌝⁻¹ i
a' : A 𝓡'
a' = transport A p a
is-CNL : Ring → 𝓤 ⁺ ̇
is-CNL (R , (𝟏 , _+_ , _·_) , i-vii , viii) = is-commutative 𝓡
× is-noetherian 𝓡
× is-local 𝓡
where
𝓡 : Rng
𝓡 = (R , (_+_ , _·_) , i-vii)
being-CNL-is-prop : (𝓡 : Ring) → is-prop (is-CNL 𝓡)
being-CNL-is-prop (R , (𝟏 , _+_ , _·_) , i-vii , viii) =
×-is-prop (being-commutative-is-prop 𝓡)
(×-is-prop (being-noetherian-is-prop 𝓡)
(being-local-is-prop 𝓡))
where
𝓡 : Rng
𝓡 = (R , (_+_ , _·_) , i-vii)
CNL-Ring : 𝓤 ⁺ ̇
CNL-Ring = Σ 𝓡 ꞉ Ring , is-CNL 𝓡
_≅[CNL]_ : CNL-Ring → CNL-Ring → 𝓤 ̇
((R , (𝟏 , _+_ , _·_) , _) , _) ≅[CNL] ((R' , (𝟏' , _+'_ , _·'_) , _) , _) =
Σ f ꞉ (R → R')
, is-equiv f
× (f 𝟏 = 𝟏')
× ((λ x y → f (x + y)) = (λ x y → f x +' f y))
× ((λ x y → f (x · y)) = (λ x y → f x ·' f y))
forget-CNL : CNL-Ring → Ring
forget-CNL (𝓡 , _) = 𝓡
forget-CNL-is-embedding : is-embedding forget-CNL
forget-CNL-is-embedding = pr₁-is-embedding being-CNL-is-prop
NB' : (𝓡 𝓡' : CNL-Ring)
→ (𝓡 ≅[CNL] 𝓡') = (forget-CNL 𝓡 ≅[Ring] forget-CNL 𝓡')
NB' 𝓡 𝓡' = refl
characterization-of-CNL-ring-= : (𝓡 𝓡' : CNL-Ring)
→ (𝓡 = 𝓡') ≃ (𝓡 ≅[CNL] 𝓡')
characterization-of-CNL-ring-= 𝓡 𝓡' =
(𝓡 = 𝓡') ≃⟨ i ⟩
(forget-CNL 𝓡 = forget-CNL 𝓡') ≃⟨ ii ⟩
(𝓡 ≅[CNL] 𝓡') ■
where
i = ≃-sym (embedding-criterion-converse forget-CNL
forget-CNL-is-embedding 𝓡 𝓡')
ii = characterization-of-ring-= (forget-CNL 𝓡) (forget-CNL 𝓡')
isomorphic-CNL-Ring-transport :
(A : CNL-Ring → 𝓥 ̇ )
→ (𝓡 𝓡' : CNL-Ring) → 𝓡 ≅[CNL] 𝓡' → A 𝓡 → A 𝓡'
isomorphic-CNL-Ring-transport A 𝓡 𝓡' i a = a'
where
p : 𝓡 = 𝓡'
p = ⌜ characterization-of-CNL-ring-= 𝓡 𝓡' ⌝⁻¹ i
a' : A 𝓡'
a' = transport A p a
module slice
{𝓤 𝓥 : Universe}
(R : 𝓥 ̇ )
where
open sip
S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇
S X = X → R
sns-data : SNS S (𝓤 ⊔ 𝓥)
sns-data = (ι , ρ , θ)
where
ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇
ι (X , g) (Y , h) (f , _) = (g = h ∘ f)
ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩)
ρ (X , g) = 𝓻𝓮𝒻𝓵 g
k : {X : 𝓤 ̇ } {g h : S X} → canonical-map ι ρ g h ∼ -id (g = h)
k (refl {g}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 g)
θ : {X : 𝓤 ̇ } (g h : S X) → is-equiv (canonical-map ι ρ g h)
θ g h = equiv-closed-under-∼ id (canonical-map ι ρ g h) (id-is-equiv (g = h)) k
_/_ : (𝓤 : Universe) → 𝓥 ̇ → 𝓤 ⁺ ⊔ 𝓥 ̇
𝓤 / Y = Σ X ꞉ 𝓤 ̇ , (X → Y)
_≅_ : 𝓤 / R → 𝓤 / R → 𝓤 ⊔ 𝓥 ̇
(X , g) ≅ (Y , h) = Σ f ꞉ (X → Y), is-equiv f × (g = h ∘ f)
characterization-of-/-= : is-univalent 𝓤 → (A B : 𝓤 / R) → (A = B) ≃ (A ≅ B)
characterization-of-/-= ua = characterization-of-= ua sns-data
module slice-variation
{𝓤 𝓥 : Universe}
(R : 𝓥 ̇ )
(ua : is-univalent 𝓤)
(fe : funext 𝓤 𝓥)
where
open sip
S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇
S X = X → R
sns-data : SNS S (𝓤 ⊔ 𝓥)
sns-data = (ι , ρ , θ)
where
ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇
ι (X , g) (Y , h) (f , _) = ((x : X) → g x = h (f x))
ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩)
ρ (X , g) = λ x → 𝓻𝓮𝒻𝓵 (g x)
k : {X : 𝓤 ̇ } {g h : S X} → canonical-map ι ρ g h ∼ happly' g h
k (refl {g}) = 𝓻𝓮𝒻𝓵 (λ x → 𝓻𝓮𝒻𝓵 (g x))
θ : {X : 𝓤 ̇ } (g h : S X) → is-equiv (canonical-map ι ρ g h)
θ g h = equiv-closed-under-∼ (happly' g h) (canonical-map ι ρ g h) (fe g h) k
_/_ : (𝓤 : Universe) → 𝓥 ̇ → 𝓤 ⁺ ⊔ 𝓥 ̇
𝓤 / Y = Σ X ꞉ 𝓤 ̇ , (X → Y)
_≅_ : 𝓤 / R → 𝓤 / R → 𝓤 ⊔ 𝓥 ̇
(X , g) ≅ (Y , h) = Σ f ꞉ (X → Y), is-equiv f × ((x : X) → g x = h (f x))
characterization-of-/-= : (A B : 𝓤 / R) → (A = B) ≃ (A ≅ B)
characterization-of-/-= = characterization-of-= ua sns-data
module universe-a-la-tarski
(𝓤 𝓥 : Universe)
(ua : is-univalent 𝓤)
(fe : funext 𝓤 (𝓥 ⁺))
where
TarskiUniverse : (𝓤 𝓥 : Universe) → (𝓤 ⊔ 𝓥)⁺ ̇
TarskiUniverse 𝓤 𝓥 = Σ X ꞉ 𝓤 ̇ , (X → 𝓥 ̇ )
_≅_ : TarskiUniverse 𝓤 𝓥 → TarskiUniverse 𝓤 𝓥 → 𝓤 ⊔ (𝓥 ⁺) ̇
(X , T) ≅ (X' , T') = Σ f ꞉ (X → X'), is-equiv f × ((x : X) → T x = T' (f x) )
characterization-of-Tarski-= : (A B : TarskiUniverse 𝓤 𝓥)
→ (A = B) ≃ (A ≅ B)
characterization-of-Tarski-= = slice-variation.characterization-of-/-= (𝓥 ̇ ) ua fe
module universe-a-la-tarski-hSet-example
(𝓤 : Universe)
(ua : is-univalent (𝓤 ⁺))
where
fe : funext (𝓤 ⁺) (𝓤 ⁺)
fe = univalence-gives-funext ua
open universe-a-la-tarski (𝓤 ⁺) 𝓤 ua fe
hset : TarskiUniverse (𝓤 ⁺) 𝓤
hset = hSet 𝓤 , pr₁
example : (X : 𝓤 ⁺ ̇ ) (T : X → 𝓤 ̇ )
→ ((X , T) = hset) ≃ (Σ f ꞉ (X → hSet 𝓤) , is-equiv f
× ((x : X) → T x = pr₁ (f x)))
example X T = characterization-of-Tarski-= (X , T) hset
module generalized-metric-space
{𝓤 𝓥 𝓦 : Universe}
(R : 𝓥 ̇ )
(axioms : (X : 𝓤 ̇ ) → (X → X → R) → 𝓦 ̇ )
(axiomss : (X : 𝓤 ̇ ) (d : X → X → R) → is-prop (axioms X d))
where
open sip
open sip-with-axioms
S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇
S X = X → X → R
sns-data : SNS S (𝓤 ⊔ 𝓥)
sns-data = (ι , ρ , θ)
where
ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇
ι (X , d) (Y , e) (f , _) = (d = λ x x' → e (f x) (f x'))
ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩)
ρ (X , d) = 𝓻𝓮𝒻𝓵 d
h : {X : 𝓤 ̇ } {d e : S X} → canonical-map ι ρ d e ∼ -id (d = e)
h (refl {d}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 d)
θ : {X : 𝓤 ̇ } (d e : S X) → is-equiv (canonical-map ι ρ d e)
θ d e = equiv-closed-under-∼ id (canonical-map ι ρ d e) (id-is-equiv (d = e)) h
M : 𝓤 ⁺ ⊔ 𝓥 ⊔ 𝓦 ̇
M = Σ X ꞉ 𝓤 ̇ , Σ d ꞉ (X → X → R) , axioms X d
_≅_ : M → M → 𝓤 ⊔ 𝓥 ̇
(X , d , _) ≅ (Y , e , _) = Σ f ꞉ (X → Y), is-equiv f
× (d = λ x x' → e (f x) (f x'))
characterization-of-M-= : is-univalent 𝓤
→ (A B : M)
→ (A = B) ≃ (A ≅ B)
characterization-of-M-= ua = characterization-of-=-with-axioms ua
sns-data
axioms axiomss
_≅'_ : M → M → 𝓤 ⊔ 𝓥 ̇
(X , d , _) ≅' (Y , e , _)
= Σ f ꞉ (X → Y), is-equiv f
× ((x x' : X) → d x x' = e (f x) (f x'))
characterization-of-M-=' :
Univalence
→ ((X , d , a) (Y , e , b) : M)
→ ((X , d , a) = (Y , e , b))
≃ (Σ f ꞉ (X → Y), is-equiv f
× ((x x' : X) → d x x' = e (f x) (f x')))
characterization-of-M-=' ua (X , d , a) (Y , e , b) =
characterization-of-M-= (ua 𝓤) (X , d , a) (Y , e , b)
● Σ-cong (λ f → ×-cong (≃-refl (is-equiv f))
(≃-funext₂ (Univalence-gives-FunExt ua 𝓤 (𝓤 ⊔ 𝓥))
(Univalence-gives-FunExt ua 𝓤 𝓥)
(λ x y → d x y)
(λ x x' → e (f x) (f x'))))
module generalized-topological-space
(𝓤 𝓥 : Universe)
(R : 𝓥 ̇ )
(axioms : (X : 𝓤 ̇ ) → ((X → R) → R) → 𝓤 ⊔ 𝓥 ̇ )
(axiomss : (X : 𝓤 ̇ ) (𝓞 : (X → R) → R) → is-prop (axioms X 𝓞))
where
open sip
open sip-with-axioms
ℙ : 𝓦 ̇ → 𝓥 ⊔ 𝓦 ̇
ℙ X = X → R
_∊_ : {X : 𝓦 ̇ } → X → ℙ X → R
x ∊ A = A x
inverse-image : {X Y : 𝓤 ̇ } → (X → Y) → ℙ Y → ℙ X
inverse-image f B = λ x → f x ∊ B
ℙℙ : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇
ℙℙ X = ℙ (ℙ X)
Space : 𝓤 ⁺ ⊔ 𝓥 ̇
Space = Σ X ꞉ 𝓤 ̇ , Σ 𝓞 ꞉ ℙℙ X , axioms X 𝓞
sns-data : SNS ℙℙ (𝓤 ⊔ 𝓥)
sns-data = (ι , ρ , θ)
where
ι : (A B : Σ ℙℙ) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇
ι (X , 𝓞X) (Y , 𝓞Y) (f , _) = (λ (V : ℙ Y) → inverse-image f V ∊ 𝓞X) = 𝓞Y
ρ : (A : Σ ℙℙ) → ι A A (≃-refl ⟨ A ⟩)
ρ (X , 𝓞) = 𝓻𝓮𝒻𝓵 𝓞
h : {X : 𝓤 ̇ } {𝓞 𝓞' : ℙℙ X} → canonical-map ι ρ 𝓞 𝓞' ∼ -id (𝓞 = 𝓞')
h (refl {𝓞}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 𝓞)
θ : {X : 𝓤 ̇ } (𝓞 𝓞' : ℙℙ X) → is-equiv (canonical-map ι ρ 𝓞 𝓞')
θ {X} 𝓞 𝓞' = equiv-closed-under-∼ id (canonical-map ι ρ 𝓞 𝓞') (id-is-equiv (𝓞 = 𝓞')) h
_≅_ : Space → Space → 𝓤 ⊔ 𝓥 ̇
(X , 𝓞X , _) ≅ (Y , 𝓞Y , _) =
Σ f ꞉ (X → Y), is-equiv f
× ((λ V → inverse-image f V ∊ 𝓞X) = 𝓞Y)
characterization-of-Space-= : is-univalent 𝓤
→ (A B : Space)
→ (A = B) ≃ (A ≅ B)
characterization-of-Space-= ua = characterization-of-=-with-axioms ua
sns-data axioms axiomss
_≅'_ : Space → Space → 𝓤 ⊔ 𝓥 ̇
(X , F , _) ≅' (Y , G , _) =
Σ f ꞉ (X → Y), is-equiv f
× ((λ (v : Y → R) → F (v ∘ f)) = G)
characterization-of-Space-=' : is-univalent 𝓤
→ (A B : Space)
→ (A = B) ≃ (A ≅' B)
characterization-of-Space-=' = characterization-of-Space-=
module selection-space
(𝓤 𝓥 : Universe)
(R : 𝓥 ̇ )
(axioms : (X : 𝓤 ̇ ) → ((X → R) → X) → 𝓤 ⊔ 𝓥 ̇ )
(axiomss : (X : 𝓤 ̇ ) (ε : (X → R) → X) → is-prop (axioms X ε))
where
open sip
open sip-with-axioms
S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇
S X = (X → R) → X
SelectionSpace : 𝓤 ⁺ ⊔ 𝓥 ̇
SelectionSpace = Σ X ꞉ 𝓤 ̇ , Σ ε ꞉ S X , axioms X ε
sns-data : SNS S (𝓤 ⊔ 𝓥)
sns-data = (ι , ρ , θ)
where
ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇
ι (X , ε) (Y , δ) (f , _) = (λ (q : Y → R) → f (ε (q ∘ f))) = δ
ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩)
ρ (X , ε) = 𝓻𝓮𝒻𝓵 ε
θ : {X : 𝓤 ̇ } (ε δ : S X) → is-equiv (canonical-map ι ρ ε δ)
θ {X} ε δ = γ
where
h : canonical-map ι ρ ε δ ∼ -id (ε = δ)
h (refl {ε}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 ε)
γ : is-equiv (canonical-map ι ρ ε δ)
γ = equiv-closed-under-∼ id (canonical-map ι ρ ε δ) (id-is-equiv (ε = δ)) h
_≅_ : SelectionSpace → SelectionSpace → 𝓤 ⊔ 𝓥 ̇
(X , ε , _) ≅ (Y , δ , _) =
Σ f ꞉ (X → Y), is-equiv f
× ((λ (q : Y → R) → f (ε (q ∘ f))) = δ)
characterization-of-selection-space-= : is-univalent 𝓤
→ (A B : SelectionSpace)
→ (A = B) ≃ (A ≅ B)
characterization-of-selection-space-= ua = characterization-of-=-with-axioms ua
sns-data
axioms axiomss
module contrived-example (𝓤 : Universe) where
open sip
contrived-= : is-univalent 𝓤 →
(X Y : 𝓤 ̇ ) (φ : (X → X) → X) (γ : (Y → Y) → Y)
→
((X , φ) = (Y , γ)) ≃ (Σ f ꞉ (X → Y)
, Σ i ꞉ is-equiv f
, (λ (g : Y → Y) → f (φ (inverse f i ∘ g ∘ f))) = γ)
contrived-= ua X Y φ γ =
characterization-of-= ua
((λ (X , φ) (Y , γ) (f , i) → (λ (g : Y → Y) → f (φ (inverse f i ∘ g ∘ f))) = γ) ,
(λ (X , φ) → 𝓻𝓮𝒻𝓵 φ) ,
(λ φ γ → equiv-closed-under-∼ _ _ (id-is-equiv (φ = γ)) (λ {(refl {φ}) → 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 φ)})))
(X , φ) (Y , γ)
module generalized-functor-algebra
{𝓤 𝓥 : Universe}
(F : 𝓤 ̇ → 𝓥 ̇ )
(𝓕 : {X Y : 𝓤 ̇ } → (X → Y) → F X → F Y)
(𝓕-id : {X : 𝓤 ̇ } → 𝓕 (-id X) = -id (F X))
where
open sip
S : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇
S X = F X → X
sns-data : SNS S (𝓤 ⊔ 𝓥)
sns-data = (ι , ρ , θ)
where
ι : (A B : Σ S) → ⟨ A ⟩ ≃ ⟨ B ⟩ → 𝓤 ⊔ 𝓥 ̇
ι (X , α) (Y , β) (f , _) = f ∘ α = β ∘ 𝓕 f
ρ : (A : Σ S) → ι A A (≃-refl ⟨ A ⟩)
ρ (X , α) = α =⟨ ap (α ∘_) (𝓕-id ⁻¹) ⟩
α ∘ 𝓕 id ∎
θ : {X : 𝓤 ̇ } (α β : S X) → is-equiv (canonical-map ι ρ α β)
θ {X} α β = γ
where
c : α = β → α = β ∘ 𝓕 id
c = transport (α =_) (ρ (X , β))
i : is-equiv c
i = transports-are-equivs (ρ (X , β))
h : canonical-map ι ρ α β ∼ c
h refl = ρ (X , α) =⟨ refl-left-neutral ⁻¹ ⟩
𝓻𝓮𝒻𝓵 α ∙ ρ (X , α) ∎
γ : is-equiv (canonical-map ι ρ α β)
γ = equiv-closed-under-∼ c (canonical-map ι ρ α β) i h
characterization-of-functor-algebra-= : is-univalent 𝓤
→ (X Y : 𝓤 ̇ ) (α : F X → X) (β : F Y → Y)
→ ((X , α) = (Y , β)) ≃ (Σ f ꞉ (X → Y), is-equiv f × (f ∘ α = β ∘ 𝓕 f))
characterization-of-functor-algebra-= ua X Y α β =
characterization-of-= ua sns-data (X , α) (Y , β)
type-valued-preorder-S : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ̇
type-valued-preorder-S {𝓤} {𝓥} X = Σ _≤_ ꞉ (X → X → 𝓥 ̇ )
, ((x : X) → x ≤ x)
× ((x y z : X) → x ≤ y → y ≤ z → x ≤ z)
module type-valued-preorder
(𝓤 𝓥 : Universe)
(ua : Univalence)
where
open sip
fe : Fun-Ext
fe {𝓤} {𝓥} = Univalence-gives-FunExt ua 𝓤 𝓥
S : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ̇
S = type-valued-preorder-S {𝓤} {𝓥}
Type-valued-preorder : (𝓤 ⊔ 𝓥) ⁺ ̇
Type-valued-preorder = Σ S
Ob : Σ S → 𝓤 ̇
Ob (X , homX , idX , compX ) = X
hom : (𝓧 : Σ S) → Ob 𝓧 → Ob 𝓧 → 𝓥 ̇
hom (X , homX , idX , compX) = homX
𝒾𝒹 : (𝓧 : Σ S) (x : Ob 𝓧) → hom 𝓧 x x
𝒾𝒹 (X , homX , idX , compX) = idX
comp : (𝓧 : Σ S) (x y z : Ob 𝓧) → hom 𝓧 x y → hom 𝓧 y z → hom 𝓧 x z
comp (X , homX , idX , compX) = compX
functorial : (𝓧 𝓐 : Σ S)
→ (F : Ob 𝓧 → Ob 𝓐)
→ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y))
→ 𝓤 ⊔ 𝓥 ̇
functorial 𝓧 𝓐 F 𝓕' = pidentity × pcomposition
where
_o_ : {x y z : Ob 𝓧} → hom 𝓧 y z → hom 𝓧 x y → hom 𝓧 x z
g o f = comp 𝓧 _ _ _ f g
_□_ : {a b c : Ob 𝓐} → hom 𝓐 b c → hom 𝓐 a b → hom 𝓐 a c
g □ f = comp 𝓐 _ _ _ f g
𝓕 : {x y : Ob 𝓧} → hom 𝓧 x y → hom 𝓐 (F x) (F y)
𝓕 f = 𝓕' _ _ f
pidentity = (λ x → 𝓕 (𝒾𝒹 𝓧 x)) = (λ x → 𝒾𝒹 𝓐 (F x))
pcomposition = (λ x y z (f : hom 𝓧 x y) (g : hom 𝓧 y z) → 𝓕 (g o f))
= (λ x y z (f : hom 𝓧 x y) (g : hom 𝓧 y z) → 𝓕 g □ 𝓕 f)
sns-data : SNS S (𝓤 ⊔ (𝓥 ⁺))
sns-data = (ι , ρ , θ)
where
ι : (𝓧 𝓐 : Σ S) → ⟨ 𝓧 ⟩ ≃ ⟨ 𝓐 ⟩ → 𝓤 ⊔ (𝓥 ⁺) ̇
ι 𝓧 𝓐 (F , _) = Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y))
, functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p)
ρ : (𝓧 : Σ S) → ι 𝓧 𝓧 (≃-refl ⟨ 𝓧 ⟩)
ρ 𝓧 = 𝓻𝓮𝒻𝓵 (hom 𝓧) , 𝓻𝓮𝒻𝓵 (𝒾𝒹 𝓧) , 𝓻𝓮𝒻𝓵 (comp 𝓧)
θ : {X : 𝓤 ̇ } (s t : S X) → is-equiv (canonical-map ι ρ s t)
θ {X} (homX , idX , compX) (homA , idA , compA) = g
where
φ = canonical-map ι ρ (homX , idX , compX) (homA , idA , compA)
γ : codomain φ → domain φ
γ (refl , refl , refl) = refl
η : γ ∘ φ ∼ id
η refl = refl
ε : φ ∘ γ ∼ id
ε (refl , refl , refl) = refl
g : is-equiv φ
g = qinvs-are-equivs φ (γ , η , ε)
lemma : (𝓧 𝓐 : Σ S) (F : Ob 𝓧 → Ob 𝓐)
→
(Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y))
, functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p))
≃
(Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y))
, (∀ x y → is-equiv (𝓕 x y))
× functorial 𝓧 𝓐 F 𝓕)
lemma 𝓧 𝓐 F = γ
where
e = (hom 𝓧 = λ x y → hom 𝓐 (F x) (F y)) ≃⟨ i ⟩
(∀ x y → hom 𝓧 x y = hom 𝓐 (F x) (F y)) ≃⟨ ii ⟩
(∀ x y → hom 𝓧 x y ≃ hom 𝓐 (F x) (F y)) ≃⟨ iii ⟩
(∀ x → Σ φ ꞉ (∀ y → hom 𝓧 x y → hom 𝓐 (F x) (F y))
, ∀ y → is-equiv (φ y)) ≃⟨ iv ⟩
(Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y))
, (∀ x y → is-equiv (𝓕 x y))) ■
where
i = ≃-funext₂ fe fe (hom 𝓧 ) λ x y → hom 𝓐 (F x) (F y)
ii = Π-cong fe fe _ _ _
(λ x → Π-cong fe fe _ _ _
(λ y → univalence-≃ (ua 𝓥) (hom 𝓧 x y) (hom 𝓐 (F x) (F y))))
iii = Π-cong fe fe _ _ _ (λ y → ΠΣ-distr-≃)
iv = ΠΣ-distr-≃
v : (p : hom 𝓧 = λ x y → hom 𝓐 (F x) (F y))
→ functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p)
≃ functorial 𝓧 𝓐 F (pr₁ (⌜ e ⌝ p))
v refl = ≃-refl _
γ =
(Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y))
, functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p)) ≃⟨ vi ⟩
(Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y))
, functorial 𝓧 𝓐 F (pr₁ (⌜ e ⌝ p))) ≃⟨ vii ⟩
(Σ σ ꞉ (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y))
, (∀ x y → is-equiv (𝓕 x y)))
, functorial 𝓧 𝓐 F (pr₁ σ)) ≃⟨ viii ⟩
(Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y))
, (∀ x y → is-equiv (𝓕 x y))
× functorial 𝓧 𝓐 F 𝓕) ■
where
vi = Σ-cong v
vii = Σ-change-of-variable _ ⌜ e ⌝ (⌜⌝-is-equiv e)
viii = Σ-assoc
characterization-of-type-valued-preorder-= :
(𝓧 𝓐 : Σ S)
→
(𝓧 = 𝓐)
≃
(Σ F ꞉ (Ob 𝓧 → Ob 𝓐)
, is-equiv F
× (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y))
, (∀ x y → is-equiv (𝓕 x y))
× functorial 𝓧 𝓐 F 𝓕))
characterization-of-type-valued-preorder-= 𝓧 𝓐 =
(𝓧 = 𝓐) ≃⟨ i ⟩
(Σ F ꞉ (Ob 𝓧 → Ob 𝓐)
, is-equiv F
× (Σ p ꞉ hom 𝓧 = (λ x y → hom 𝓐 (F x) (F y))
, functorial 𝓧 𝓐 F (λ x y → transport (λ - → - x y) p))) ≃⟨ ii ⟩
(Σ F ꞉ (Ob 𝓧 → Ob 𝓐)
, is-equiv F
× (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y))
, (∀ x y → is-equiv (𝓕 x y))
× functorial 𝓧 𝓐 F 𝓕)) ■
where
i = characterization-of-= (ua 𝓤) sns-data 𝓧 𝓐
ii = Σ-cong (λ F → Σ-cong (λ _ → lemma 𝓧 𝓐 F))
module type-valued-preorder-with-axioms
(𝓤 𝓥 𝓦 : Universe)
(ua : Univalence)
(axioms : (X : 𝓤 ̇ ) → type-valued-preorder-S {𝓤} {𝓥} X → 𝓦 ̇ )
(axiomss : (X : 𝓤 ̇ ) (s : type-valued-preorder-S X) → is-prop (axioms X s))
where
open sip
open sip-with-axioms
open type-valued-preorder 𝓤 𝓥 ua
S' : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ⊔ 𝓦 ̇
S' X = Σ s ꞉ S X , axioms X s
sns-data' : SNS S' (𝓤 ⊔ (𝓥 ⁺))
sns-data' = add-axioms axioms axiomss sns-data
characterization-of-type-valued-preorder-=-with-axioms :
(𝓧' 𝓐' : Σ S')
→
(𝓧' = 𝓐')
≃
(Σ F ꞉ (Ob [ 𝓧' ] → Ob [ 𝓐' ])
, is-equiv F
× (Σ 𝓕 ꞉ ((x y : Ob [ 𝓧' ]) → hom [ 𝓧' ] x y → hom [ 𝓐' ] (F x) (F y))
, (∀ x y → is-equiv (𝓕 x y))
× functorial [ 𝓧' ] [ 𝓐' ] F 𝓕))
characterization-of-type-valued-preorder-=-with-axioms 𝓧' 𝓐' =
(𝓧' = 𝓐') ≃⟨ i ⟩
([ 𝓧' ] ≃[ sns-data ] [ 𝓐' ]) ≃⟨ ii ⟩
_ ■
where
i = characterization-of-=-with-axioms (ua 𝓤) sns-data axioms axiomss 𝓧' 𝓐'
ii = Σ-cong (λ F → Σ-cong (λ _ → lemma [ 𝓧' ] [ 𝓐' ] F))
module category
(𝓤 𝓥 : Universe)
(ua : Univalence)
where
open type-valued-preorder-with-axioms 𝓤 𝓥 (𝓤 ⊔ 𝓥) ua
fe : Fun-Ext
fe {𝓤} {𝓥} = Univalence-gives-FunExt ua 𝓤 𝓥
S : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ̇
S = type-valued-preorder-S {𝓤} {𝓥}
category-axioms : (X : 𝓤 ̇ ) → S X → 𝓤 ⊔ 𝓥 ̇
category-axioms X (homX , idX , compX) = hom-sets × identityl × identityr × associativity
where
_o_ : {x y z : X} → homX y z → homX x y → homX x z
g o f = compX _ _ _ f g
hom-sets = ∀ x y → is-set (homX x y)
identityl = ∀ x y (f : homX x y) → f o (idX x) = f
identityr = ∀ x y (f : homX x y) → (idX y) o f = f
associativity = ∀ x y z t (f : homX x y) (g : homX y z) (h : homX z t)
→ (h o g) o f = h o (g o f)
category-axioms-prop : (X : 𝓤 ̇ ) (s : S X) → is-prop (category-axioms X s)
category-axioms-prop X (homX , idX , compX) ca = γ ca
where
i : ∀ x y → is-set (homX x y)
i = pr₁ ca
γ : is-prop (category-axioms X (homX , idX , compX))
γ = ×-is-prop ss (×-is-prop ls (×-is-prop rs as))
where
ss = Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → being-set-is-prop fe))
ls = Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → Π-is-prop fe
(λ f → i x y)))
rs = Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → Π-is-prop fe
(λ f → i x y)))
as = Π-is-prop fe
(λ x → Π-is-prop fe
(λ y → Π-is-prop fe
(λ z → Π-is-prop fe
(λ t → Π-is-prop fe
(λ f → Π-is-prop fe
(λ g → Π-is-prop fe
(λ h → i x t)))))))
Cat : (𝓤 ⊔ 𝓥)⁺ ̇
Cat = Σ X ꞉ 𝓤 ̇ , Σ s ꞉ S X , category-axioms X s
Ob : Cat → 𝓤 ̇
Ob (X , (homX , idX , compX) , _) = X
hom : (𝓧 : Cat) → Ob 𝓧 → Ob 𝓧 → 𝓥 ̇
hom (X , (homX , idX , compX) , _) = homX
𝒾𝒹 : (𝓧 : Cat) (x : Ob 𝓧) → hom 𝓧 x x
𝒾𝒹 (X , (homX , idX , compX) , _) = idX
comp : (𝓧 : Cat) (x y z : Ob 𝓧) (f : hom 𝓧 x y) (g : hom 𝓧 y z) → hom 𝓧 x z
comp (X , (homX , idX , compX) , _) = compX
is-functorial : (𝓧 𝓐 : Cat)
→ (F : Ob 𝓧 → Ob 𝓐)
→ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y))
→ 𝓤 ⊔ 𝓥 ̇
is-functorial 𝓧 𝓐 F 𝓕' = pidentity × pcomposition
where
_o_ : {x y z : Ob 𝓧} → hom 𝓧 y z → hom 𝓧 x y → hom 𝓧 x z
g o f = comp 𝓧 _ _ _ f g
_□_ : {a b c : Ob 𝓐} → hom 𝓐 b c → hom 𝓐 a b → hom 𝓐 a c
g □ f = comp 𝓐 _ _ _ f g
𝓕 : {x y : Ob 𝓧} → hom 𝓧 x y → hom 𝓐 (F x) (F y)
𝓕 f = 𝓕' _ _ f
pidentity = (λ x → 𝓕 (𝒾𝒹 𝓧 x)) = (λ x → 𝒾𝒹 𝓐 (F x))
pcomposition = (λ x y z (f : hom 𝓧 x y) (g : hom 𝓧 y z) → 𝓕 (g o f))
= (λ x y z (f : hom 𝓧 x y) (g : hom 𝓧 y z) → 𝓕 g □ 𝓕 f)
_⋍_ : Cat → Cat → 𝓤 ⊔ 𝓥 ̇
𝓧 ⋍ 𝓐 = Σ F ꞉ (Ob 𝓧 → Ob 𝓐)
, is-equiv F
× (Σ 𝓕 ꞉ ((x y : Ob 𝓧) → hom 𝓧 x y → hom 𝓐 (F x) (F y))
, (∀ x y → is-equiv (𝓕 x y))
× is-functorial 𝓧 𝓐 F 𝓕)
idtoeqCat : (𝓧 𝓐 : Cat) → 𝓧 = 𝓐 → 𝓧 ⋍ 𝓐
idtoeqCat 𝓧 𝓧 (refl {𝓧}) = -id (Ob 𝓧 ) ,
id-is-equiv (Ob 𝓧 ) ,
(λ x y → -id (hom 𝓧 x y)) ,
(λ x y → id-is-equiv (hom 𝓧 x y)) ,
𝓻𝓮𝒻𝓵 (𝒾𝒹 𝓧) ,
𝓻𝓮𝒻𝓵 (comp 𝓧)
characterization-of-category-= : (𝓧 𝓐 : Cat) → (𝓧 = 𝓐) ≃ (𝓧 ⋍ 𝓐)
characterization-of-category-= = characterization-of-type-valued-preorder-=-with-axioms
category-axioms category-axioms-prop
idtoeqCat-is-equiv : (𝓧 𝓐 : Cat) → is-equiv (idtoeqCat 𝓧 𝓐)
idtoeqCat-is-equiv 𝓧 𝓐 = equiv-closed-under-∼ _ _
(⌜⌝-is-equiv (characterization-of-category-= 𝓧 𝓐))
(γ 𝓧 𝓐)
where
γ : (𝓧 𝓐 : Cat) → idtoeqCat 𝓧 𝓐 ∼ ⌜ characterization-of-category-= 𝓧 𝓐 ⌝
γ 𝓧 𝓧 (refl {𝓧}) = 𝓻𝓮𝒻𝓵 (idtoeqCat 𝓧 𝓧 (𝓻𝓮𝒻𝓵 𝓧))
\end{code}
We now consider ∞-magmas with the binary operation generalized to an
operation of arbitrary arity. This is used to define σ-frames.
\begin{code}
module ∞-bigmagma {𝓤 𝓥 : Universe} (I : 𝓥 ̇ ) where
open sip
∞-bigmagma-structure : 𝓤 ̇ → 𝓤 ⊔ 𝓥 ̇
∞-bigmagma-structure A = (I → A) → A
∞-Bigmagma : 𝓤 ⁺ ⊔ 𝓥 ̇
∞-Bigmagma = Σ A ꞉ 𝓤 ̇ , ∞-bigmagma-structure A
sns-data : SNS ∞-bigmagma-structure (𝓤 ⊔ 𝓥)
sns-data = (ι , ρ , θ)
where
ι : (𝓐 𝓐' : ∞-Bigmagma) → ⟨ 𝓐 ⟩ ≃ ⟨ 𝓐' ⟩ → 𝓤 ⊔ 𝓥 ̇
ι (A , sup) (A' , sup') (f , _) = (λ 𝕒 → f (sup 𝕒)) = (λ 𝕒 → sup' (n ↦ f (𝕒 n)))
ρ : (𝓐 : ∞-Bigmagma) → ι 𝓐 𝓐 (≃-refl ⟨ 𝓐 ⟩)
ρ (A , sup) = 𝓻𝓮𝒻𝓵 sup
h : {A : 𝓤 ̇ } {sup sup' : ∞-bigmagma-structure A}
→ canonical-map ι ρ sup sup' ∼ -id (sup = sup')
h (refl {sup}) = 𝓻𝓮𝒻𝓵 (𝓻𝓮𝒻𝓵 sup)
θ : {A : 𝓤 ̇ } (sup sup' : ∞-bigmagma-structure A)
→ is-equiv (canonical-map ι ρ sup sup')
θ sup sup' = equiv-closed-under-∼ _ _ (id-is-equiv (sup = sup')) h
_≅[∞-Bigmagma]_ : ∞-Bigmagma → ∞-Bigmagma → 𝓤 ⊔ 𝓥 ̇
(A , sup) ≅[∞-Bigmagma] (A' , sup') =
Σ f ꞉ (A → A'), is-equiv f
× ((λ 𝕒 → f (sup 𝕒)) = (λ 𝕒 → sup' (n ↦ f (𝕒 n))))
characterization-of-∞-Bigmagma-= : is-univalent 𝓤
→ (A B : ∞-Bigmagma)
→ (A = B) ≃ (A ≅[∞-Bigmagma] B)
characterization-of-∞-Bigmagma-= ua = characterization-of-= ua sns-data
\end{code}
We use the above in another module to define σ-frames.
We now consider ∞-bigmagmas with all operations of all arities, which
we use in another module to define frames.
\begin{code}
module ∞-hugemagma {𝓤 𝓥 : Universe} where
open sip
∞-hugemagma-structure : 𝓤 ̇ → 𝓤 ⊔ (𝓥 ⁺) ̇
∞-hugemagma-structure A = {N : 𝓥 ̇ } → (N → A) → A
∞-Hugemagma : (𝓤 ⊔ 𝓥)⁺ ̇
∞-Hugemagma = Σ A ꞉ 𝓤 ̇ , ∞-hugemagma-structure A
sns-data : SNS ∞-hugemagma-structure (𝓤 ⊔ (𝓥 ⁺))
sns-data = (ι , ρ , θ)
where
ι : (𝓐 𝓐' : ∞-Hugemagma) → ⟨ 𝓐 ⟩ ≃ ⟨ 𝓐' ⟩ → 𝓤 ⊔ (𝓥 ⁺) ̇
ι (A , sup) (A' , sup') (f , _) = (λ {N} (𝕒 : N → A) → f (sup 𝕒)) = (λ {N} 𝕒 → sup' (i ↦ f (𝕒 i)))
ρ : (𝓐 : ∞-Hugemagma) → ι 𝓐 𝓐 (≃-refl ⟨ 𝓐 ⟩)
ρ (A , sup) = refl
h : {A : 𝓤 ̇ } {sup sup' : ∞-hugemagma-structure A}
→ canonical-map ι ρ sup sup' ∼ id
h refl = refl
θ : {A : 𝓤 ̇ } (sup sup' : ∞-hugemagma-structure A)
→ is-equiv (canonical-map ι ρ sup sup')
θ sup sup' = equiv-closed-under-∼ _ _ (id-is-equiv _) h
_≅[∞-Hugemagma]_ : ∞-Hugemagma → ∞-Hugemagma → 𝓤 ⊔ (𝓥 ⁺) ̇
(A , sup) ≅[∞-Hugemagma] (A' , sup') =
Σ f ꞉ (A → A'), is-equiv f
× ((λ {N} (𝕒 : N → A) → f (sup 𝕒)) = (λ {N} (𝕒 : N → A) → sup' (i ↦ f (𝕒 i))))
characterization-of-∞-Hugemagma-= : is-univalent 𝓤
→ (A B : ∞-Hugemagma)
→ (A = B) ≃ (A ≅[∞-Hugemagma] B)
characterization-of-∞-Hugemagma-= ua = characterization-of-= ua sns-data
\end{code}