Chuangjie Xu 2011, with changes by Martin Escardo later.

\begin{code}

{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}

module Naturals.Addition where

open import MLTT.Spartan hiding (_+_)
open import Naturals.Properties

infixl 31 _+_

_+_ :     
n + 0 = n
n + (succ m) = succ (n + m)

zero-right-neutral : (n : )  n + 0  n
zero-right-neutral n = refl

zero-left-neutral : (n : )  0 + n  n
zero-left-neutral = induction base step
  where
   base : 0 + 0  0
   base = refl

   step : (n : )  0 + n  n  0 + succ n  succ n
   step n IH = 0 + succ n   =⟨ refl 
               succ (0 + n) =⟨ ap succ IH 
               succ n       

addition-associativity : (l n m : )  (l + n) + m  l + (n + m)
addition-associativity l n = induction base step
  where
   base : (l + n) + 0  l + (n + 0)
   base = (l + n) + 0  =⟨ refl 
           l + n       =⟨ refl 
           l + (n + 0) 

   step : (m : )  (l + n) + m  l + (n + m)
                   (l + n) + succ m  l + (n + succ m)
   step m IH = (l + n) + succ m   =⟨ refl 
               succ ((l + n) + m) =⟨ ap succ IH 
               succ (l + (n + m)) =⟨ refl 
               l + succ (n + m)   =⟨ refl 
               l + (n + succ m)   

addition-commutativity : (n m : )  n + m  m + n
addition-commutativity n = induction base step
  where
   base : n + 0  0 + n
   base = n + 0 =⟨ zero-right-neutral n 
          n     =⟨ (zero-left-neutral n)⁻¹ 
          0 + n 

   step : (m : )  n + m  m + n  n + succ m  succ m + n
   step m IH = n + succ m   =⟨ refl 
               succ (n + m) =⟨ ap succ IH 
               succ (m + n) =⟨ lemma₀ (m + n) 
               1 + (m + n)  =⟨ (addition-associativity 1 m n)⁻¹ 
               (1 + m) + n  =⟨ ap (_+ n) ((lemma₀ m)⁻¹) 
               succ m + n   
     where
      lemma₀ : (k : )  succ k  1 + k
      lemma₀ = induction base₀ step₀
        where
         base₀ : succ 0  1 + 0
         base₀ = refl

         step₀ : (k : )  succ k  1 + k  succ (succ k)  1 + succ k
         step₀ k IH = succ (succ k) =⟨ ap succ IH 
                      succ (1 + k)  =⟨ refl 
                      1 + succ k    

trivial-addition-rearrangement : (x y z : )  x + y + z  x + z + y
trivial-addition-rearrangement x y z =
  (x + y) + z =⟨ addition-associativity x y z 
  x + (y + z) =⟨ ap (x +_) (addition-commutativity y z) 
  x + (z + y) =⟨ (addition-associativity x z y)⁻¹ 
  (x + z) + y 

\end{code}

Added 12/05/2020 by Andrew Sneap.

Some more simple properties of addition. The proofs all use induction,
apart from addition-right-cancellable which follows from
addition-left-cancellable and commutativity of addition.

\begin{code}

succ-right : (x y : )  x + succ y  succ (x + y)
succ-right x y = refl

succ-left : (x y : )  succ x + y  succ (x + y)
succ-left x = induction base step 
  where
    base : succ x + 0  succ (x + 0)
    base = succ x + 0   =⟨ refl         
           succ x       =⟨ ap succ refl  
           succ (x + 0) 

    step : (k : )  succ x + k  succ (x + k)  succ x + succ k  succ (x + succ k)
    step k IH = succ x + succ k     =⟨ refl 
                succ (succ x + k)   =⟨ ap succ IH 
                succ (succ (x + k)) =⟨ refl 
                succ (x + succ k)   

addition-left-cancellable : (x y z : )  z + x  z + y  x  y
addition-left-cancellable x y = induction base step
 where
  base : 0 + x  0 + y  x  y
  base h = x      =⟨ zero-left-neutral x ⁻¹ 
           0 + x  =⟨ h                      
           0 + y  =⟨ zero-left-neutral y    
           y 

  step : (k : )
        (k + x       k + y       x  y)
        (succ k + x  succ k + y  x  y)
  step k IH r = IH (succ-lc (lemma₁ r))
   where
    lemma₁ : succ k + x  succ k + y  succ (k + x)  succ (k + y)
    lemma₁ r = succ (k + x)           =⟨ succ-left k x ⁻¹ 
               succ k + x             =⟨ r                
               succ k + y             =⟨ succ-left k y    
               succ (k + y)         


addition-right-cancellable : (x y z : )  x + z  y + z  x  y
addition-right-cancellable x y z r = addition-left-cancellable x y z lemma₀
 where
  lemma₀ : z + x  z + y
  lemma₀ = z + x      =⟨ addition-commutativity z x 
           x + z      =⟨ r                          
           y + z      =⟨ addition-commutativity y z  
           z + y 

\end{code}

We also have that if the sum of two numbers are zero, then the right
argument is zero. The left argument is zero, which can be proved using
commutativity of addition. This function is needed in the HCF file.

\begin{code}

sum-to-zero-gives-zero : (x y : )  x + y  0  y  0
sum-to-zero-gives-zero x 0        e = refl
sum-to-zero-gives-zero x (succ y) e = have positive-not-zero (x + y) which-contradicts e

\end{code}