Chuangjie Xu 2011, with changes by Martin Escardo later. \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} module Naturals.Addition where open import MLTT.Spartan hiding (_+_) open import Naturals.Properties infixl 31 _+_ _+_ : ℕ → ℕ → ℕ n + 0 = n n + (succ m) = succ (n + m) zero-right-neutral : (n : ℕ) → n + 0 = n zero-right-neutral n = refl zero-left-neutral : (n : ℕ) → 0 + n = n zero-left-neutral = induction base step where base : 0 + 0 = 0 base = refl step : (n : ℕ) → 0 + n = n → 0 + succ n = succ n step n IH = 0 + succ n =⟨ refl ⟩ succ (0 + n) =⟨ ap succ IH ⟩ succ n ∎ addition-associativity : (l n m : ℕ) → (l + n) + m = l + (n + m) addition-associativity l n = induction base step where base : (l + n) + 0 = l + (n + 0) base = (l + n) + 0 =⟨ refl ⟩ l + n =⟨ refl ⟩ l + (n + 0) ∎ step : (m : ℕ) → (l + n) + m = l + (n + m) → (l + n) + succ m = l + (n + succ m) step m IH = (l + n) + succ m =⟨ refl ⟩ succ ((l + n) + m) =⟨ ap succ IH ⟩ succ (l + (n + m)) =⟨ refl ⟩ l + succ (n + m) =⟨ refl ⟩ l + (n + succ m) ∎ addition-commutativity : (n m : ℕ) → n + m = m + n addition-commutativity n = induction base step where base : n + 0 = 0 + n base = n + 0 =⟨ zero-right-neutral n ⟩ n =⟨ (zero-left-neutral n)⁻¹ ⟩ 0 + n ∎ step : (m : ℕ) → n + m = m + n → n + succ m = succ m + n step m IH = n + succ m =⟨ refl ⟩ succ (n + m) =⟨ ap succ IH ⟩ succ (m + n) =⟨ lemma₀ (m + n) ⟩ 1 + (m + n) =⟨ (addition-associativity 1 m n)⁻¹ ⟩ (1 + m) + n =⟨ ap (_+ n) ((lemma₀ m)⁻¹) ⟩ succ m + n ∎ where lemma₀ : (k : ℕ) → succ k = 1 + k lemma₀ = induction base₀ step₀ where base₀ : succ 0 = 1 + 0 base₀ = refl step₀ : (k : ℕ) → succ k = 1 + k → succ (succ k) = 1 + succ k step₀ k IH = succ (succ k) =⟨ ap succ IH ⟩ succ (1 + k) =⟨ refl ⟩ 1 + succ k ∎ trivial-addition-rearrangement : (x y z : ℕ) → x + y + z = x + z + y trivial-addition-rearrangement x y z = (x + y) + z =⟨ addition-associativity x y z ⟩ x + (y + z) =⟨ ap (x +_) (addition-commutativity y z) ⟩ x + (z + y) =⟨ (addition-associativity x z y)⁻¹ ⟩ (x + z) + y ∎ \end{code} Added 12/05/2020 by Andrew Sneap. Some more simple properties of addition. The proofs all use induction, apart from addition-right-cancellable which follows from addition-left-cancellable and commutativity of addition. \begin{code} succ-right : (x y : ℕ) → x + succ y = succ (x + y) succ-right x y = refl succ-left : (x y : ℕ) → succ x + y = succ (x + y) succ-left x = induction base step where base : succ x + 0 = succ (x + 0) base = succ x + 0 =⟨ refl ⟩ succ x =⟨ ap succ refl ⟩ succ (x + 0) ∎ step : (k : ℕ) → succ x + k = succ (x + k) → succ x + succ k = succ (x + succ k) step k IH = succ x + succ k =⟨ refl ⟩ succ (succ x + k) =⟨ ap succ IH ⟩ succ (succ (x + k)) =⟨ refl ⟩ succ (x + succ k) ∎ addition-left-cancellable : (x y z : ℕ) → z + x = z + y → x = y addition-left-cancellable x y = induction base step where base : 0 + x = 0 + y → x = y base h = x =⟨ zero-left-neutral x ⁻¹ ⟩ 0 + x =⟨ h ⟩ 0 + y =⟨ zero-left-neutral y ⟩ y ∎ step : (k : ℕ) → (k + x = k + y → x = y) → (succ k + x = succ k + y → x = y) step k IH r = IH (succ-lc (lemma₁ r)) where lemma₁ : succ k + x = succ k + y → succ (k + x) = succ (k + y) lemma₁ r = succ (k + x) =⟨ succ-left k x ⁻¹ ⟩ succ k + x =⟨ r ⟩ succ k + y =⟨ succ-left k y ⟩ succ (k + y) ∎ addition-right-cancellable : (x y z : ℕ) → x + z = y + z → x = y addition-right-cancellable x y z r = addition-left-cancellable x y z lemma₀ where lemma₀ : z + x = z + y lemma₀ = z + x =⟨ addition-commutativity z x ⟩ x + z =⟨ r ⟩ y + z =⟨ addition-commutativity y z ⟩ z + y ∎ \end{code} We also have that if the sum of two numbers are zero, then the right argument is zero. The left argument is zero, which can be proved using commutativity of addition. This function is needed in the HCF file. \begin{code} sum-to-zero-gives-zero : (x y : ℕ) → x + y = 0 → y = 0 sum-to-zero-gives-zero x 0 e = refl sum-to-zero-gives-zero x (succ y) e = have positive-not-zero (x + y) which-contradicts e \end{code}