Martin Escardo, 4th October 2018 The ordinal of truth values in a universe 𝓤. \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} open import MLTT.Spartan open import UF.FunExt open import UF.Subsingletons renaming (⊤Ω to ⊤ ; ⊥Ω to ⊥) module Ordinals.OrdinalOfTruthValues (fe : FunExt) (𝓤 : Universe) (pe : propext 𝓤) where open import UF.Subsingletons-FunExt open import Ordinals.Arithmetic fe open import Ordinals.Type open import Ordinals.Notions open import Ordinals.Type open import Ordinals.Underlying Ωₒ : Ordinal (𝓤 ⁺) Ωₒ = Ω 𝓤 , _≺_ , pv , w , e , t where _≺_ : Ω 𝓤 → Ω 𝓤 → 𝓤 ⁺ ̇ p ≺ q = (p = ⊥) × (q = ⊤) pv : is-prop-valued _≺_ pv p q = ×-is-prop (Ω-is-set (fe 𝓤 𝓤) pe) (Ω-is-set (fe 𝓤 𝓤) pe) w : is-well-founded _≺_ w p = step s where t : (q : Ω 𝓤) → q ≺ ⊥ → is-accessible _≺_ q t ⊥ (refl , b) = 𝟘-elim (⊥-is-not-⊤ b) ⊥-accessible : is-accessible _≺_ ⊥ ⊥-accessible = step t s : (q : Ω 𝓤) → q ≺ p → is-accessible _≺_ q s ⊥ (refl , b) = ⊥-accessible e : is-extensional _≺_ e p q f g = Ω-ext pe (fe 𝓤 𝓤) φ ψ where φ : p = ⊤ → q = ⊤ φ a = pr₂ (f ⊥ (refl , a)) ψ : q = ⊤ → p = ⊤ ψ b = pr₂ (g ⊥ (refl , b)) t : is-transitive _≺_ t p q r (a , _) (_ , b) = a , b ⊥-is-least : is-least Ωₒ ⊥ ⊥-is-least (P , i) (𝟘 , 𝟘-is-prop) (refl , q) = 𝟘-elim (equal-⊤-is-true 𝟘 𝟘-is-prop q) ⊤-is-largest : is-largest Ωₒ ⊤ ⊤-is-largest (.𝟙 , .𝟙-is-prop) (.𝟘 , .𝟘-is-prop) (refl , refl) = refl , refl ¬¬-dense-is-largest' : (p q : Ω 𝓤) → ¬¬ (p holds) → (q ≾⟨ Ωₒ ⟩ p) ¬¬-dense-is-largest' .⊥ .⊤ f (refl , refl) = f 𝟘-elim open import UF.Univalence module _ (ua : Univalence) where open import Ordinals.OrdinalOfOrdinals ua 𝟚ₒ-leq-Ωₒ : 𝟚ₒ {𝓤} ⊴ Ωₒ 𝟚ₒ-leq-Ωₒ = f , i , p where f : 𝟙 + 𝟙 → Ω 𝓤 f (inl ⋆) = ⊥ f (inr ⋆) = ⊤ i : is-initial-segment 𝟚ₒ Ωₒ f i (inl ⋆) .⊥ (refl , e) = 𝟘-elim (⊥-is-not-⊤ e) i (inr ⋆) .⊥ (refl , _) = inl ⋆ , ⋆ , refl p : is-order-preserving 𝟚ₒ Ωₒ f p (inl ⋆) (inr x) ⋆ = refl , refl p (inr ⋆) (inl x) l = 𝟘-elim l p (inr ⋆) (inr x) l = 𝟘-elim l \end{code} Notice also that being a least element is not in general decidable because in this example being a least element amounts to being false, and deciding falsity is equivalent to weak excluded middle.