Martin Escardo, 29 June 2018

To get closure under sums constructively, we need to restrict to
particular kinds of ordinals. Having a top element is a simple
sufficient condition, which holds in the applications we have in mind
(for compact ordinals).  Classically, ordinals with a top element are
precisely the successor ordinals. Constructively, ℕ∞ is an example of
an ordinal with a top element, which "is not" a successor ordinal, as
its top element is not isolated.

TODO. Generalize this from 𝓤₀ to an arbitrary universe. The
(practical) problem is that the type of natural numbers is defined at
𝓤₀. We could (1) either using universe lifting, or (2) define the type
in any universe (like we did for the the types 𝟘 and 𝟙). But (1) is
cumbersome and (2) requires much work in other modules.


\begin{code}

{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}

open import UF.FunExt

module Ordinals.ToppedArithmetic
        (fe : FunExt)
       where

open import UF.Subsingletons

open import MLTT.Spartan
open import CoNaturals.GenericConvergentSequence
open import TypeTopology.SquashedSum fe
open import Notation.CanonicalMap

open import Ordinals.Type
open import Ordinals.Arithmetic fe
open import Ordinals.WellOrderArithmetic
open import Ordinals.ToppedType fe
open import Ordinals.Injectivity
open import Ordinals.Underlying

Ordᵀ = Ordinalᵀ 𝓤₀

succₒ : Ordinal 𝓤  Ordinalᵀ 𝓤
succₒ α = α +ₒ 𝟙ₒ  ,
          plus.top-preservation
           (underlying-order α)
           (underlying-order 𝟙ₒ)
           (prop.topped 𝟙 𝟙-is-prop )

succₒ-is-trichotomous : (α : Ordinal 𝓤)
                       is-trichotomous α
                       is-trichotomous [ succₒ α ]
succₒ-is-trichotomous α t = +ₒ-is-trichotomous α 𝟙ₒ t 𝟙ₒ-is-trichotomous

𝟙ᵒ 𝟚ᵒ : Ordinalᵀ 𝓤
𝟙ᵒ = 𝟙ₒ , prop.topped 𝟙 𝟙-is-prop 
𝟚ᵒ = succₒ 𝟙ₒ

ℕ∞ᵒ : Ordᵀ
ℕ∞ᵒ = (ℕ∞ₒ ,  , ∞-top)

\end{code}

Sum of an ordinal-indexed family of ordinals:

\begin{code}

 : (τ : Ordinalᵀ 𝓤)  ( τ   Ordinalᵀ 𝓤)  Ordinalᵀ 𝓤
 {𝓤} ((X , _<_ , o) , t) υ = ((Σ x  X ,  υ x ) ,
                              Sum.order ,
                              Sum.well-order o  x  tis-well-ordered (υ x))) ,
                          Sum.top-preservation t
 where
  _≺_ : {x : X}   υ x    υ x   𝓤 ̇
  y  z = y ≺⟨ υ _  z

  module Sum = sum-top fe _<_ _≺_  x  top (υ x))  x  top-is-top (υ x))

∑-is-trichotomous : (τ : Ordinalᵀ 𝓤) (υ :  τ   Ordinalᵀ 𝓤)
                   is-trichotomous [ τ ]
                   ((x :  τ )  is-trichotomous [ υ x ])
                   is-trichotomous [  τ υ ]
∑-is-trichotomous τ υ = sum.trichotomy-preservation _ _

\end{code}

Addition and multiplication can be reduced to ∑, given the ordinal 𝟚ᵒ
defined above:

\begin{code}

_+ᵒ_ : Ordinalᵀ 𝓤  Ordinalᵀ 𝓤  Ordinalᵀ 𝓤
τ +ᵒ υ =  𝟚ᵒ (cases  _  τ)  _  υ))

+ᵒ-is-trichotomous : (τ υ : Ordinalᵀ 𝓤)
                    is-trichotomous [ τ ]
                    is-trichotomous [ υ ]
                    is-trichotomous [ τ +ᵒ υ ]
+ᵒ-is-trichotomous τ υ t u = ∑-is-trichotomous 𝟚ᵒ (cases  _  τ)  _  υ))
                              𝟚ₒ-is-trichotomous
                              (dep-cases  _  t)  _  u))

_×ᵒ_ : Ordinalᵀ 𝓤  Ordinalᵀ 𝓤  Ordinalᵀ 𝓤
τ ×ᵒ υ =  τ   (_ :  τ )  υ)

×ᵒ-is-trichotomous : (τ υ : Ordinalᵀ 𝓤)
                    is-trichotomous [ τ ]
                    is-trichotomous [ υ ]
                    is-trichotomous [ τ ×ᵒ υ ]
×ᵒ-is-trichotomous τ υ t u = ∑-is-trichotomous τ  _  υ) t  _  u)

\end{code}

Extension of a family X → Ordᵀ along an embedding j : X → A to get a
family A → Ordᵀ. (This can also be done for Ord-valued families.)
This uses the module UF.InjectiveTypes to calculate Y / j.

Sum of a countable family with an added non-isolated top element. We
first extend the family to ℕ∞ and then take the ordinal-indexed sum of
ordinals defined above.

\begin{code}

open topped-ordinals-injectivity fe

∑¹ : (  Ordᵀ)  Ordᵀ
∑¹ τ =  ℕ∞ᵒ (τ  embedding-ℕ-to-ℕ∞ (fe 𝓤₀ 𝓤₀))

\end{code}

And now with an isolated top element:

\begin{code}

∑₁ : (  Ordᵀ)  Ordᵀ
∑₁ τ =  (succₒ ω) (τ  (over , over-embedding))

\end{code}

Added 4th May 2022.

\begin{code}

module Omega {𝓤} (pe : propext 𝓤) where
 open import Ordinals.OrdinalOfTruthValues fe 𝓤 pe
 open import Ordinals.Notions
 open import UF.Subsingletons-FunExt

 Ωᵒ : Ordinalᵀ (𝓤 )
 Ωᵒ = Ωₒ , ⊤Ω , h
  where
   h : is-top (underlying-order Ωₒ) ⊤Ω
   h y (p , _) = ⊥-is-not-⊤ (p ⁻¹)

\end{code}