Martin Escardo 2012. The following says that a particular kind of discontinuity for functions p : ℕ∞ → ₂ is a taboo. Equivalently, it says that the convergence of the constant sequence ₀ to the number ₁ in the type of binary numbers is a taboo. A Brouwerian continuity axiom is that any convergent sequence in the type ₂ of binary numbers must be eventually constant (which we don't postulate). \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} open import MLTT.Spartan open import UF.FunExt module Taboos.BasicDiscontinuity (fe : FunExt) where open import MLTT.Two-Properties open import MLTT.Plus-Properties open import CoNaturals.GenericConvergentSequence open import Taboos.WLPO open import Notation.CanonicalMap basic-discontinuity : (ℕ∞ → 𝟚) → 𝓤₀ ̇ basic-discontinuity p = ((n : ℕ) → p (ι n) = ₀) × (p ∞ = ₁) basic-discontinuity-taboo : (p : ℕ∞ → 𝟚) → basic-discontinuity p → WLPO basic-discontinuity-taboo p (f , r) u = 𝟚-equality-cases lemma₀ lemma₁ where fact₀ : u = ∞ → p u = ₁ fact₀ t = p u =⟨ ap p t ⟩ p ∞ =⟨ r ⟩ ₁ ∎ fact₁ : p u ≠ ₁ → u ≠ ∞ fact₁ = contrapositive fact₀ fact₂ : p u = ₀ → u ≠ ∞ fact₂ = fact₁ ∘ equal-₀-different-from-₁ lemma₀ : p u = ₀ → (u = ∞) + (u ≠ ∞) lemma₀ s = inr (fact₂ s) fact₃ : p u = ₁ → ((n : ℕ) → u ≠ ι n) fact₃ t n s = zero-is-not-one (₀ =⟨ (f n)⁻¹ ⟩ p (ι n) =⟨ (ap p s)⁻¹ ⟩ p u =⟨ t ⟩ ₁ ∎) lemma₁ : p u = ₁ → (u = ∞) + (u ≠ ∞) lemma₁ t = inl (not-finite-is-∞ (fe 𝓤₀ 𝓤₀) (fact₃ t)) \end{code} The converse also holds. It shows that any proof of WLPO is a discontinuous function, which we use to build a discontinuous function of type ℕ∞ → 𝟚. \begin{code} WLPO-is-discontinuous : WLPO → Σ p ꞉ (ℕ∞ → 𝟚), basic-discontinuity p WLPO-is-discontinuous f = p , (d , d∞) where p : ℕ∞ → 𝟚 p u = equality-cases (f u) case₀ case₁ where case₀ : (r : u = ∞) → f u = inl r → 𝟚 case₀ r s = ₁ case₁ : (r : u ≠ ∞) → f u = inr r → 𝟚 case₁ r s = ₀ d : (n : ℕ) → p (ι n) = ₀ d n = equality-cases (f (ι n)) case₀ case₁ where case₀ : (r : ι n = ∞) → f (ι n) = inl r → p (ι n) = ₀ case₀ r s = 𝟘-elim (∞-is-not-finite n (r ⁻¹)) case₁ : (g : ι n ≠ ∞) → f (ι n) = inr g → p (ι n) = ₀ case₁ g = ap (λ - → equality-cases - (λ r s → ₁) (λ r s → ₀)) d∞ : p ∞ = ₁ d∞ = equality-cases (f ∞) case₀ case₁ where case₀ : (r : ∞ = ∞) → f ∞ = inl r → p ∞ = ₁ case₀ r = ap (λ - → equality-cases - (λ r s → ₁) (λ r s → ₀)) case₁ : (g : ∞ ≠ ∞) → f ∞ = inr g → p ∞ = ₁ case₁ g = 𝟘-elim (g refl) \end{code} If two 𝟚-valued functions defined on ℕ∞ agree at ℕ, they have to agree at ∞ too, unless WLPO holds: \begin{code} disagreement-taboo : (p q : ℕ∞ → 𝟚) → ((n : ℕ) → p (ι n) = q (ι n)) → p ∞ ≠ q ∞ → WLPO disagreement-taboo p q f g = basic-discontinuity-taboo r (r-lemma , r-lemma∞) where r : ℕ∞ → 𝟚 r u = (p u) ⊕ (q u) r-lemma : (n : ℕ) → r (ι n) = ₀ r-lemma n = Lemma[b=c→b⊕c=₀] (f n) r-lemma∞ : r ∞ = ₁ r-lemma∞ = Lemma[b≠c→b⊕c=₁] g open import TypeTopology.DiscreteAndSeparated agreement-cotaboo : ¬ WLPO → (p q : ℕ∞ → 𝟚) → ((n : ℕ) → p (ι n) = q (ι n)) → p ∞ = q ∞ agreement-cotaboo φ p q f = 𝟚-is-¬¬-separated (p ∞) (q ∞) (contrapositive (disagreement-taboo p q f) φ) \end{code}