Martin Escardo 2011.
(Totally separated types moved to the module TotallySeparated January
2018, and extended.)
\begin{code}
{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}
module TypeTopology.DiscreteAndSeparated where
open import MLTT.Spartan
open import MLTT.Plus-Properties
open import MLTT.Two-Properties
open import Naturals.Properties
open import NotionsOfDecidability.Complemented
open import NotionsOfDecidability.Decidable
open import UF.Base
open import UF.Equiv
open import UF.FunExt
open import UF.Retracts
open import UF.Subsingletons renaming (⊤Ω to ⊤ ; ⊥Ω to ⊥)
open import UF.Subsingletons-FunExt
is-isolated : {X : 𝓤 ̇ } → X → 𝓤 ̇
is-isolated x = ∀ y → decidable (x = y)
is-perfect : 𝓤 ̇ → 𝓤 ̇
is-perfect X = is-empty (Σ x ꞉ X , is-isolated x)
is-isolated' : {X : 𝓤 ̇ } → X → 𝓤 ̇
is-isolated' x = ∀ y → decidable (y = x)
decidable-eq-sym : {X : 𝓤 ̇ } (x y : X) → decidable (x = y) → decidable (y = x)
decidable-eq-sym x y = cases
(λ (p : x = y) → inl (p ⁻¹))
(λ (n : ¬ (x = y)) → inr (λ (q : y = x) → n (q ⁻¹)))
is-isolated'-gives-is-isolated : {X : 𝓤 ̇ } (x : X) → is-isolated' x → is-isolated x
is-isolated'-gives-is-isolated x i' y = decidable-eq-sym y x (i' y)
is-isolated-gives-is-isolated' : {X : 𝓤 ̇ } (x : X) → is-isolated x → is-isolated' x
is-isolated-gives-is-isolated' x i y = decidable-eq-sym x y (i y)
is-discrete : 𝓤 ̇ → 𝓤 ̇
is-discrete X = (x : X) → is-isolated x
\end{code}
Standard examples:
\begin{code}
props-are-discrete : {P : 𝓤 ̇ } → is-prop P → is-discrete P
props-are-discrete i x y = inl (i x y)
𝟘-is-discrete : is-discrete (𝟘 {𝓤})
𝟘-is-discrete = props-are-discrete 𝟘-is-prop
𝟙-is-discrete : is-discrete (𝟙 {𝓤})
𝟙-is-discrete = props-are-discrete 𝟙-is-prop
𝟚-is-discrete : is-discrete 𝟚
𝟚-is-discrete ₀ ₀ = inl refl
𝟚-is-discrete ₀ ₁ = inr (λ (p : ₀ = ₁) → 𝟘-elim (zero-is-not-one p))
𝟚-is-discrete ₁ ₀ = inr (λ (p : ₁ = ₀) → 𝟘-elim (zero-is-not-one (p ⁻¹)))
𝟚-is-discrete ₁ ₁ = inl refl
ℕ-is-discrete : is-discrete ℕ
ℕ-is-discrete 0 0 = inl refl
ℕ-is-discrete 0 (succ n) = inr (λ (p : zero = succ n) → positive-not-zero n (p ⁻¹))
ℕ-is-discrete (succ m) 0 = inr (λ (p : succ m = zero) → positive-not-zero m p)
ℕ-is-discrete (succ m) (succ n) = step (ℕ-is-discrete m n)
where
step : (m = n) + (m ≠ n) → (succ m = succ n) + (succ m ≠ succ n)
step (inl r) = inl (ap succ r)
step (inr f) = inr (λ s → f (succ-lc s))
inl-is-isolated : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (x : X)
→ is-isolated x → is-isolated (inl x)
inl-is-isolated {𝓤} {𝓥} {X} {Y} x i = γ
where
γ : (z : X + Y) → decidable (inl x = z)
γ (inl x') = Cases (i x')
(λ (p : x = x') → inl (ap inl p))
(λ (n : ¬ (x = x')) → inr (contrapositive inl-lc n))
γ (inr y) = inr +disjoint
inr-is-isolated : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (y : Y)
→ is-isolated y → is-isolated (inr y)
inr-is-isolated {𝓤} {𝓥} {X} {Y} y i = γ
where
γ : (z : X + Y) → decidable (inr y = z)
γ (inl x) = inr +disjoint'
γ (inr y') = Cases (i y')
(λ (p : y = y') → inl (ap inr p))
(λ (n : ¬ (y = y')) → inr (contrapositive inr-lc n))
+-is-discrete : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
→ is-discrete X → is-discrete Y → is-discrete (X + Y)
+-is-discrete d e (inl x) = inl-is-isolated x (d x)
+-is-discrete d e (inr y) = inr-is-isolated y (e y)
\end{code}
The closure of discrete types under Σ is proved in the module
UF.Miscelanea (as this requires to first prove that discrete types
are sets).
General properties:
\begin{code}
discrete-is-cotransitive : {X : 𝓤 ̇ }
→ is-discrete X → {x y z : X} → x ≠ y → (x ≠ z) + (z ≠ y)
discrete-is-cotransitive d {x} {y} {z} φ = f (d x z)
where
f : (x = z) + (x ≠ z) → (x ≠ z) + (z ≠ y)
f (inl r) = inr (λ s → φ (r ∙ s))
f (inr γ) = inl γ
retract-is-discrete : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
→ retract Y of X → is-discrete X → is-discrete Y
retract-is-discrete (f , (s , φ)) d y y' = g (d (s y) (s y'))
where
g : decidable (s y = s y') → decidable (y = y')
g (inl p) = inl ((φ y) ⁻¹ ∙ ap f p ∙ φ y')
g (inr u) = inr (contrapositive (ap s) u)
𝟚-retract-of-non-trivial-type-with-isolated-point : {X : 𝓤 ̇ } {x₀ x₁ : X} → x₀ ≠ x₁
→ is-isolated x₀ → retract 𝟚 of X
𝟚-retract-of-non-trivial-type-with-isolated-point {𝓤} {X} {x₀} {x₁} ne d = r , (s , rs)
where
r : X → 𝟚
r = pr₁ (characteristic-function d)
φ : (x : X) → (r x = ₀ → x₀ = x) × (r x = ₁ → ¬ (x₀ = x))
φ = pr₂ (characteristic-function d)
s : 𝟚 → X
s ₀ = x₀
s ₁ = x₁
rs : (n : 𝟚) → r (s n) = n
rs ₀ = different-from-₁-equal-₀ (λ p → pr₂ (φ x₀) p refl)
rs ₁ = different-from-₀-equal-₁ λ p → 𝟘-elim (ne (pr₁ (φ x₁) p))
𝟚-retract-of-discrete : {X : 𝓤 ̇ } {x₀ x₁ : X} → x₀ ≠ x₁ → is-discrete X → retract 𝟚 of X
𝟚-retract-of-discrete {𝓤} {X} {x₀} {x₁} ne d = 𝟚-retract-of-non-trivial-type-with-isolated-point ne (d x₀)
\end{code}
¬¬-Separated types form an exponential ideal, assuming
extensionality. More generally:
\begin{code}
is-¬¬-separated : 𝓤 ̇ → 𝓤 ̇
is-¬¬-separated X = (x y : X) → ¬¬-stable (x = y)
Π-is-¬¬-separated : funext 𝓤 𝓥
→ {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ }
→ ((x : X) → is-¬¬-separated (Y x))
→ is-¬¬-separated (Π Y)
Π-is-¬¬-separated fe s f g h = dfunext fe lemma₂
where
lemma₀ : f = g → ∀ x → f x = g x
lemma₀ r x = ap (λ - → - x) r
lemma₁ : ∀ x → ¬¬ (f x = g x)
lemma₁ = double-negation-unshift (¬¬-functor lemma₀ h)
lemma₂ : ∀ x → f x = g x
lemma₂ x = s x (f x) (g x) (lemma₁ x)
discrete-is-¬¬-separated : {X : 𝓤 ̇ } → is-discrete X → is-¬¬-separated X
discrete-is-¬¬-separated d x y = ¬¬-elim (d x y)
𝟚-is-¬¬-separated : is-¬¬-separated 𝟚
𝟚-is-¬¬-separated = discrete-is-¬¬-separated 𝟚-is-discrete
subtype-is-¬¬-separated : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (m : X → Y)
→ left-cancellable m
→ is-¬¬-separated Y
→ is-¬¬-separated X
subtype-is-¬¬-separated {𝓤} {𝓥} {X} m i s x x' e = i (s (m x) (m x') (¬¬-functor (ap m) e))
\end{code}
The following is an apartness relation when Y is ¬¬-separated, but we
define it without this assumption. (Are all types ¬¬-separated? See
below.)
\begin{code}
infix 21 _♯_
_♯_ : {X : 𝓤 ̇ } → {Y : X → 𝓥 ̇ } → (f g : (x : X) → Y x) → 𝓤 ⊔ 𝓥 ̇
f ♯ g = Σ x ꞉ domain f , f x ≠ g x
apart-is-different : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ }
→ {f g : (x : X) → Y x} → f ♯ g → f ≠ g
apart-is-different (x , φ) r = φ (ap (λ - → - x) r)
apart-is-symmetric : {X : 𝓤 ̇ } → {Y : X → 𝓥 ̇ }
→ {f g : (x : X) → Y x} → f ♯ g → g ♯ f
apart-is-symmetric (x , φ) = (x , (φ ∘ _⁻¹))
apart-is-cotransitive : {X : 𝓤 ̇ } → {Y : X → 𝓥 ̇ }
→ ((x : X) → is-discrete (Y x))
→ (f g h : (x : X) → Y x)
→ f ♯ g → f ♯ h + h ♯ g
apart-is-cotransitive d f g h (x , φ) = lemma₁ (lemma₀ φ)
where
lemma₀ : f x ≠ g x → (f x ≠ h x) + (h x ≠ g x)
lemma₀ = discrete-is-cotransitive (d x)
lemma₁ : (f x ≠ h x) + (h x ≠ g x) → f ♯ h + h ♯ g
lemma₁ (inl γ) = inl (x , γ)
lemma₁ (inr δ) = inr (x , δ)
\end{code}
We now consider two cases which render the apartness relation ♯ tight,
assuming extensionality:
\begin{code}
tight : {X : 𝓤 ̇ }
→ funext 𝓤 𝓥
→ {Y : X → 𝓥 ̇ }
→ ((x : X) → is-¬¬-separated (Y x))
→ (f g : (x : X) → Y x)
→ ¬ (f ♯ g) → f = g
tight fe s f g h = dfunext fe lemma₁
where
lemma₀ : ∀ x → ¬¬ (f x = g x)
lemma₀ = not-Σ-implies-Π-not h
lemma₁ : ∀ x → f x = g x
lemma₁ x = (s x (f x) (g x)) (lemma₀ x)
tight' : {X : 𝓤 ̇ }
→ funext 𝓤 𝓥
→ {Y : X → 𝓥 ̇ }
→ ((x : X) → is-discrete (Y x)) → (f g : (x : X) → Y x) → ¬ (f ♯ g) → f = g
tight' fe d = tight fe (λ x → discrete-is-¬¬-separated (d x))
\end{code}
What about sums? The special case they reduce to binary products is
easy:
\begin{code}
binary-product-is-¬¬-separated : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
→ is-¬¬-separated X
→ is-¬¬-separated Y
→ is-¬¬-separated (X × Y)
binary-product-is-¬¬-separated s t (x , y) (x' , y') φ =
lemma (lemma₀ φ) (lemma₁ φ)
where
lemma₀ : ¬¬ ((x , y) = (x' , y')) → x = x'
lemma₀ = (s x x') ∘ ¬¬-functor (ap pr₁)
lemma₁ : ¬¬ ((x , y) = (x' , y')) → y = y'
lemma₁ = (t y y') ∘ ¬¬-functor (ap pr₂)
lemma : x = x' → y = y' → (x , y) = (x' , y')
lemma = ap₂ (_,_)
\end{code}
This proof doesn't work for general dependent sums, because, among
other things, (ap pr₁) doesn't make sense in that case. A different
special case is also easy:
\begin{code}
binary-sum-is-¬¬-separated : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
→ is-¬¬-separated X
→ is-¬¬-separated Y
→ is-¬¬-separated (X + Y)
binary-sum-is-¬¬-separated {𝓤} {𝓥} {X} {Y} s t (inl x) (inl x') = lemma
where
claim : inl x = inl x' → x = x'
claim = ap p
where
p : X + Y → X
p (inl u) = u
p (inr v) = x
lemma : ¬¬ (inl x = inl x') → inl x = inl x'
lemma = ap inl ∘ s x x' ∘ ¬¬-functor claim
binary-sum-is-¬¬-separated s t (inl x) (inr y) = λ φ → 𝟘-elim (φ +disjoint )
binary-sum-is-¬¬-separated s t (inr y) (inl x) = λ φ → 𝟘-elim (φ (+disjoint ∘ _⁻¹))
binary-sum-is-¬¬-separated {𝓤} {𝓥} {X} {Y} s t (inr y) (inr y') = lemma
where
claim : inr y = inr y' → y = y'
claim = ap q
where
q : X + Y → Y
q (inl u) = y
q (inr v) = v
lemma : ¬¬ (inr y = inr y') → inr y = inr y'
lemma = (ap inr) ∘ (t y y') ∘ ¬¬-functor claim
⊥-⊤-density' : funext 𝓤 𝓤
→ propext 𝓤
→ ∀ {𝓥} {X : 𝓥 ̇ }
→ is-¬¬-separated X
→ (f : Ω 𝓤 → X) → f ⊥ = f ⊤
→ wconstant f
⊥-⊤-density' fe pe s f r p q = g p ∙ (g q)⁻¹
where
a : ∀ p → ¬¬ (f p = f ⊤)
a p t = no-truth-values-other-than-⊥-or-⊤ fe pe (p , (b , c))
where
b : p ≠ ⊥
b u = t (ap f u ∙ r)
c : p ≠ ⊤
c u = t (ap f u)
g : ∀ p → f p = f ⊤
g p = s (f p) (f ⊤) (a p)
\end{code}
Added 19th March 2021.
\begin{code}
equality-of-¬¬stable-propositions' : propext 𝓤
→ (P Q : 𝓤 ̇ )
→ is-prop P
→ is-prop Q
→ ¬¬-stable P
→ ¬¬-stable Q
→ ¬¬-stable (P = Q)
equality-of-¬¬stable-propositions' pe P Q i j f g a = V
where
I : ¬¬ (P → Q)
I = ¬¬-functor (transport id) a
II : P → Q
II = →-is-¬¬-stable g I
III : ¬¬ (Q → P)
III = ¬¬-functor (transport id ∘ _⁻¹) a
IV : Q → P
IV = →-is-¬¬-stable f III
V : P = Q
V = pe i j II IV
equality-of-¬¬stable-propositions : funext 𝓤 𝓤
→ propext 𝓤
→ (p q : Ω 𝓤)
→ ¬¬-stable (p holds)
→ ¬¬-stable (q holds)
→ ¬¬-stable (p = q)
equality-of-¬¬stable-propositions fe pe p q f g a = γ
where
δ : p holds = q holds
δ = equality-of-¬¬stable-propositions'
pe (p holds) (q holds) (holds-is-prop p) (holds-is-prop q)
f g (¬¬-functor (ap _holds) a)
γ : p = q
γ = to-subtype-= (λ _ → being-prop-is-prop fe) δ
\end{code}
Added by Tom de Jong in January 2022.
Another logical place for these three lemmas would be Negation.lagda, but
(1) the first lemma needs _⇔_ which is defined in Notation.General.lagda, which
imports Negation.lagda;
(2) the second lemma needs _≃_ which is only defined in UF.Equiv.lagda;
(3) the third lemma needs funext, which is only defined in UF.FunExt.lagda.
\begin{code}
¬¬-stable-⇔ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
→ X ⇔ Y
→ ¬¬-stable X
→ ¬¬-stable Y
¬¬-stable-⇔ (f , g) σ h = f (σ (¬¬-functor g h))
¬¬-stable-≃ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
→ X ≃ Y
→ ¬¬-stable X
→ ¬¬-stable Y
¬¬-stable-≃ e = ¬¬-stable-⇔ (⌜ e ⌝ , ⌜ e ⌝⁻¹)
being-¬¬-stable-is-prop : {X : 𝓤 ̇ }
→ funext 𝓤 𝓤
→ is-prop X → is-prop (¬¬-stable X)
being-¬¬-stable-is-prop fe i = Π-is-prop fe (λ _ → i)
\end{code}
\begin{code}
Ω¬¬ : (𝓤 : Universe) → 𝓤 ⁺ ̇
Ω¬¬ 𝓤 = Σ p ꞉ Ω 𝓤 , ¬¬-stable (p holds)
Ω¬¬-is-¬¬-separated : funext 𝓤 𝓤
→ propext 𝓤
→ is-¬¬-separated (Ω¬¬ 𝓤)
Ω¬¬-is-¬¬-separated fe pe (p , s) (q , t) ν = γ
where
α : ¬¬ (p = q)
α = ¬¬-functor (ap pr₁) ν
δ : p = q
δ = equality-of-¬¬stable-propositions fe pe p q s t α
γ : (p , s) = (q , t)
γ = to-subtype-= (λ p → Π-is-prop fe (λ _ → holds-is-prop p)) δ
⊥-⊤-Density : funext 𝓤 𝓤
→ propext 𝓤
→ {X : 𝓥 ̇ }
(f : Ω 𝓤 → X)
→ is-¬¬-separated X
→ f ⊥ = f ⊤
→ (p : Ω 𝓤) → f p = f ⊤
⊥-⊤-Density fe pe f s r p = s (f p) (f ⊤) a
where
a : ¬¬ (f p = f ⊤)
a u = no-truth-values-other-than-⊥-or-⊤ fe pe (p , b , c)
where
b : p ≠ ⊥
b v = u (ap f v ∙ r)
c : p ≠ ⊤
c w = u (ap f w)
⊥-⊤-density : funext 𝓤 𝓤
→ propext 𝓤
→ (f : Ω 𝓤 → 𝟚)
→ f ⊥ = ₁
→ f ⊤ = ₁
→ (p : Ω 𝓤) → f p = ₁
⊥-⊤-density fe pe f r s p = ⊥-⊤-Density fe pe f 𝟚-is-¬¬-separated (r ∙ s ⁻¹) p ∙ s
\end{code}
21 March 2018
\begin{code}
qinvs-preserve-isolatedness : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → qinv f
→ (x : X) → is-isolated x → is-isolated (f x)
qinvs-preserve-isolatedness {𝓤} {𝓥} {X} {Y} f (g , ε , η) x i y = h (i (g y))
where
h : decidable (x = g y) → decidable (f x = y)
h (inl p) = inl (ap f p ∙ η y)
h (inr u) = inr (contrapositive (λ (q : f x = y) → (ε x)⁻¹ ∙ ap g q) u)
equivs-preserve-isolatedness : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → is-equiv f
→ (x : X) → is-isolated x → is-isolated (f x)
equivs-preserve-isolatedness f e = qinvs-preserve-isolatedness f (equivs-are-qinvs f e)
new-point-is-isolated : {X : 𝓤 ̇ } → is-isolated {𝓤 ⊔ 𝓥} {X + 𝟙 {𝓥}} (inr ⋆)
new-point-is-isolated {𝓤} {𝓥} {X} = h
where
h : (y : X + 𝟙) → decidable (inr ⋆ = y)
h (inl x) = inr +disjoint'
h (inr ⋆) = inl refl
\end{code}
Back to old stuff:
\begin{code}
=-indicator : (m : ℕ) → Σ p ꞉ (ℕ → 𝟚) , ((n : ℕ) → (p n = ₀ → m ≠ n) × (p n = ₁ → m = n))
=-indicator m = co-characteristic-function (ℕ-is-discrete m)
χ= : ℕ → ℕ → 𝟚
χ= m = pr₁ (=-indicator m)
χ=-spec : (m n : ℕ) → (χ= m n = ₀ → m ≠ n) × (χ= m n = ₁ → m = n)
χ=-spec m = pr₂ (=-indicator m)
_=[ℕ]_ : ℕ → ℕ → 𝓤₀ ̇
m =[ℕ] n = (χ= m n) = ₁
infix 30 _=[ℕ]_
=-agrees-with-=[ℕ] : (m n : ℕ) → m = n ⇔ m =[ℕ] n
=-agrees-with-=[ℕ] m n = (λ r → different-from-₀-equal-₁ (λ s → pr₁ (χ=-spec m n) s r)) , pr₂ (χ=-spec m n)
≠-indicator : (m : ℕ) → Σ p ꞉ (ℕ → 𝟚) , ((n : ℕ) → (p n = ₀ → m = n) × (p n = ₁ → m ≠ n))
≠-indicator m = indicator (ℕ-is-discrete m)
χ≠ : ℕ → ℕ → 𝟚
χ≠ m = pr₁ (≠-indicator m)
χ≠-spec : (m n : ℕ) → (χ≠ m n = ₀ → m = n) × (χ≠ m n = ₁ → m ≠ n)
χ≠-spec m = pr₂ (≠-indicator m)
_≠[ℕ]_ : ℕ → ℕ → 𝓤₀ ̇
m ≠[ℕ] n = (χ≠ m n) = ₁
infix 30 _≠[ℕ]_
≠[ℕ]-agrees-with-≠ : (m n : ℕ) → m ≠[ℕ] n ⇔ m ≠ n
≠[ℕ]-agrees-with-≠ m n = pr₂ (χ≠-spec m n) , (λ d → different-from-₀-equal-₁ (contrapositive (pr₁ (χ≠-spec m n)) d))
\end{code}
Added 14th Feb 2020:
\begin{code}
discrete-exponential-has-decidable-emptiness-of-exponent : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
→ funext 𝓤 𝓥
→ (Σ y₀ ꞉ Y , Σ y₁ ꞉ Y , y₀ ≠ y₁)
→ is-discrete (X → Y)
→ decidable (is-empty X)
discrete-exponential-has-decidable-emptiness-of-exponent {𝓤} {𝓥} {X} {Y} fe (y₀ , y₁ , ne) d = γ
where
a : decidable ((λ _ → y₀) = (λ _ → y₁))
a = d (λ _ → y₀) (λ _ → y₁)
f : decidable ((λ _ → y₀) = (λ _ → y₁)) → decidable (is-empty X)
f (inl p) = inl g
where
g : is-empty X
g x = ne q
where
q : y₀ = y₁
q = ap (λ - → - x) p
f (inr ν) = inr (contrapositive g ν)
where
g : is-empty X → (λ _ → y₀) = (λ _ → y₁)
g ν = dfunext fe (λ x → 𝟘-elim (ν x))
γ : decidable (is-empty X)
γ = f a
\end{code}