Martin Escardo 2011

A function is dense if the complement of its image is empty. Maybe
¬¬-surjective would be a better terminology.

\begin{code}

{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}

module TypeTopology.Density where

open import MLTT.Spartan
open import TypeTopology.DiscreteAndSeparated

open import UF.Base
open import UF.Equiv
open import UF.Retracts
open import UF.Embeddings

is-dense : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }  (X  Y)  𝓤  𝓥 ̇
is-dense {𝓤} {𝓥} {X} {Y} f = ¬ (Σ y  Y , ¬ (Σ x  X , f x  y))

dense-maps-into-¬¬-separated-types-are-rc' : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : Y  𝓦 ̇ }
                                            {h : X  Y} {f g : Π Z}
                                           is-dense h
                                           ((y : Y)  is-¬¬-separated (Z y))
                                           f  h  g  h
                                           f  g
dense-maps-into-¬¬-separated-types-are-rc' {𝓤} {𝓥} {𝓦} {X} {Y} {Z} {h} {f} {g} d s p = γ
 where
  a : (y : Y)  (Σ x  X , h x  y)  ¬ (f y  g y)
  a y (x , q) ψ = ψ (f y                     =⟨ (apd f q )⁻¹ 
                     transport Z q (f (h x)) =⟨ ap (transport Z q) (p x) 
                     transport Z q (g (h x)) =⟨ apd g q 
                     g y                     )

  b : (y : Y)  ¬ (f y  g y)
  b y ψ = d (y , λ σ  a y σ ψ)

  γ : f  g
  γ y = s y (f y) (g y) (b y)

dense-maps-into-¬¬-separated-types-are-rc : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ }
                                            {h : X  Y} {f g : Y  Z}
                                           is-dense h
                                           is-¬¬-separated Z
                                           f  h  g  h
                                           f  g
dense-maps-into-¬¬-separated-types-are-rc d s =
 dense-maps-into-¬¬-separated-types-are-rc' d  _  s)

id-is-dense : {X : 𝓤 ̇ }  is-dense (id {𝓤} {X})
id-is-dense (y , n) = n (y , refl)

comp-is-dense : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ }
                {f : X  Y} {g : Y  Z}
               is-dense f
               is-dense g
               is-dense (g  f)
comp-is-dense {𝓤} {𝓥} {𝓦} {X} {Y} {Z} {f} {g} e d = h
 where
  h : ¬ (Σ z  Z , ¬ fiber (g  f) z)
  h (z , n) = d (z , k)
   where
    k : ¬ fiber g z
    k (y , refl) = e (y , l)
     where
      l : ¬ fiber f y
      l (x , refl) = n (x , refl)


_↪ᵈ_ : 𝓤 ̇  𝓥 ̇  𝓤  𝓥 ̇
X ↪ᵈ Y = Σ f  (X  Y) , is-embedding f × is-dense f

module _ {𝓤 𝓥} {X : 𝓤 ̇ } {Y : 𝓥 ̇ } where

 retraction-is-dense : (r : X  Y)  has-section r  is-dense r
 retraction-is-dense r (s , rs) (y , n) = n (s y , rs y)

 equivs-are-dense : (f : X  Y)  is-equiv f  is-dense f
 equivs-are-dense f e = retraction-is-dense f (equivs-have-sections f e)

 equiv-dense-embedding : X  Y  X ↪ᵈ Y
 equiv-dense-embedding e =  e  ,
                           equivs-are-embeddings  e  (⌜⌝-is-equiv e),
                           equivs-are-dense       e  (⌜⌝-is-equiv e)

 detofun : (X ↪ᵈ Y)  X  Y
 detofun = pr₁

 is-embedding-detofun : (e : X ↪ᵈ Y)  is-embedding (detofun e)
 is-embedding-detofun e = pr₁ (pr₂ e)

 is-dense-detofun : (e : X ↪ᵈ Y)  is-dense (detofun e)
 is-dense-detofun e = pr₂ (pr₂ e)


\end{code}