Martin Escardo 2011 A function is dense if the complement of its image is empty. Maybe ¬¬-surjective would be a better terminology. \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} module TypeTopology.Density where open import MLTT.Spartan open import TypeTopology.DiscreteAndSeparated open import UF.Base open import UF.Equiv open import UF.Retracts open import UF.Embeddings is-dense : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → (X → Y) → 𝓤 ⊔ 𝓥 ̇ is-dense {𝓤} {𝓥} {X} {Y} f = ¬ (Σ y ꞉ Y , ¬ (Σ x ꞉ X , f x = y)) dense-maps-into-¬¬-separated-types-are-rc' : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : Y → 𝓦 ̇ } {h : X → Y} {f g : Π Z} → is-dense h → ((y : Y) → is-¬¬-separated (Z y)) → f ∘ h ∼ g ∘ h → f ∼ g dense-maps-into-¬¬-separated-types-are-rc' {𝓤} {𝓥} {𝓦} {X} {Y} {Z} {h} {f} {g} d s p = γ where a : (y : Y) → (Σ x ꞉ X , h x = y) → ¬ (f y ≠ g y) a y (x , q) ψ = ψ (f y =⟨ (apd f q )⁻¹ ⟩ transport Z q (f (h x)) =⟨ ap (transport Z q) (p x) ⟩ transport Z q (g (h x)) =⟨ apd g q ⟩ g y ∎) b : (y : Y) → ¬ (f y ≠ g y) b y ψ = d (y , λ σ → a y σ ψ) γ : f ∼ g γ y = s y (f y) (g y) (b y) dense-maps-into-¬¬-separated-types-are-rc : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ } {h : X → Y} {f g : Y → Z} → is-dense h → is-¬¬-separated Z → f ∘ h ∼ g ∘ h → f ∼ g dense-maps-into-¬¬-separated-types-are-rc d s = dense-maps-into-¬¬-separated-types-are-rc' d (λ _ → s) id-is-dense : {X : 𝓤 ̇ } → is-dense (id {𝓤} {X}) id-is-dense (y , n) = n (y , refl) comp-is-dense : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ } {f : X → Y} {g : Y → Z} → is-dense f → is-dense g → is-dense (g ∘ f) comp-is-dense {𝓤} {𝓥} {𝓦} {X} {Y} {Z} {f} {g} e d = h where h : ¬ (Σ z ꞉ Z , ¬ fiber (g ∘ f) z) h (z , n) = d (z , k) where k : ¬ fiber g z k (y , refl) = e (y , l) where l : ¬ fiber f y l (x , refl) = n (x , refl) _↪ᵈ_ : 𝓤 ̇ → 𝓥 ̇ → 𝓤 ⊔ 𝓥 ̇ X ↪ᵈ Y = Σ f ꞉ (X → Y) , is-embedding f × is-dense f module _ {𝓤 𝓥} {X : 𝓤 ̇ } {Y : 𝓥 ̇ } where retraction-is-dense : (r : X → Y) → has-section r → is-dense r retraction-is-dense r (s , rs) (y , n) = n (s y , rs y) equivs-are-dense : (f : X → Y) → is-equiv f → is-dense f equivs-are-dense f e = retraction-is-dense f (equivs-have-sections f e) equiv-dense-embedding : X ≃ Y → X ↪ᵈ Y equiv-dense-embedding e = ⌜ e ⌝ , equivs-are-embeddings ⌜ e ⌝ (⌜⌝-is-equiv e), equivs-are-dense ⌜ e ⌝ (⌜⌝-is-equiv e) detofun : (X ↪ᵈ Y) → X → Y detofun = pr₁ is-embedding-detofun : (e : X ↪ᵈ Y) → is-embedding (detofun e) is-embedding-detofun e = pr₁ (pr₂ e) is-dense-detofun : (e : X ↪ᵈ Y) → is-dense (detofun e) is-dense-detofun e = pr₂ (pr₂ e) \end{code}