Martin Escardo, 29th January 2019 If univalence holds, then any universe is embedded into any larger universe. We do this without cumulativity, because it is not available in the Martin-LoΜf type theory that we are working with in Agda. Moreover, any map f : π€ Μ β π€ β π₯ Μ with f X β X for all X : π€ Μ is an embedding, e.g. the map X β¦ X + π {π₯}. (Here the notion of a map being an embedding is stronger than that of being left-cancellable, and it means that the fibers of the map are propositions, or subsingletons, as in HoTT/UF.) \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} module UF.UniverseEmbedding where open import MLTT.Spartan open import UF.Embeddings open import UF.Equiv open import UF.Equiv-FunExt open import UF.EquivalenceExamples open import UF.FunExt open import UF.Lower-FunExt open import UF.PairFun open import UF.Subsingletons open import UF.Subsingletons-FunExt open import UF.UA-FunExt open import UF.Univalence is-universe-embedding : (π€ Μ β π₯ Μ ) β (π€ βΊ) β π₯ Μ is-universe-embedding f = β X β f X β X \end{code} Of course: \begin{code} at-most-one-universe-embedding : Univalence β (f g : π€ Μ β π₯ Μ ) β is-universe-embedding f β is-universe-embedding g β f οΌ g at-most-one-universe-embedding {π€} {π₯} ua f g i j = p where h : β X β f X β g X h X = i X β β-sym (j X) H : f βΌ g H X = eqtoid (ua π₯) (f X) (g X) (h X) p : f οΌ g p = dfunext (Univalence-gives-Fun-Ext ua) H universe-embeddings-are-embeddings : Univalence β (π€ π₯ : Universe) (f : π€ Μ β π₯ Μ ) β is-universe-embedding f β is-embedding f universe-embeddings-are-embeddings ua π€ π₯ f i = embedding-criterion' f Ξ³ where Ξ³ : (X X' : π€ Μ ) β (f X οΌ f X') β (X οΌ X') Ξ³ X X' = (f X οΌ f X') ββ¨ a β© (f X β f X') ββ¨ b β© (X β X') ββ¨ c β© (X οΌ X') β where a = univalence-β (ua π₯) (f X) (f X') b = β-cong (Univalence-gives-FunExt ua) (i X) (i X') c = β-sym (univalence-β (ua π€) X X') \end{code} For instance, the following function satisfies this condition and hence is an embedding: \begin{code} Lift' : (π₯ : Universe) β π€ Μ β π€ β π₯ Μ Lift' π₯ X = X + π {π₯} lift' : (π₯ : Universe) {X : π€ Μ } β X β Lift' π₯ X lift' π₯ = inl lower' : {π₯ : Universe} {X : π€ Μ } β Lift' π₯ X β X lower' (inl x) = x lower' (inr x) = π-elim x Lift'-β : (π₯ : Universe) (X : π€ Μ ) β Lift' π₯ X β X Lift'-β π₯ X = π-rneutral' Lift'-is-embedding : Univalence β is-embedding (Lift' {π€} π₯) Lift'-is-embedding {π€} {π₯} ua = universe-embeddings-are-embeddings ua π€ (π€ β π₯) (Lift' π₯) (Lift'-β π₯) \end{code} The following embedding has better definitional properties: \begin{code} Lift : (π₯ : Universe) β π€ Μ β π€ β π₯ Μ Lift π₯ X = X Γ π {π₯} lift : (π₯ : Universe) {X : π€ Μ } β X β Lift π₯ X lift π₯ x = (x , β) lower : {X : π€ Μ } β Lift π₯ X β X lower (x , β) = x Ξ·-Lift : (π₯ : Universe) {X : π€ Μ } (π : Lift π₯ X) β lift π₯ (lower π) οΌ π Ξ·-Lift π₯ π = refl Ξ΅-Lift : (π₯ : Universe) {X : π€ Μ } (x : X) β lower (lift π₯ x) οΌ x Ξ΅-Lift π₯ x = refl lower-is-equiv : {X : π€ Μ } β is-equiv (lower {π€} {π₯} {X}) lower-is-equiv {π€} {π₯} = (lift π₯ , Ξ΅-Lift π₯) , (lift π₯ , Ξ·-Lift π₯) lift-is-equiv : {X : π€ Μ } β is-equiv (lift π₯ {X}) lift-is-equiv {π€} {π₯} = (lower , Ξ·-Lift π₯) , lower , Ξ΅-Lift π₯ Lift-β : (π₯ : Universe) (X : π€ Μ ) β Lift π₯ X β X Lift-β π₯ X = lower , lower-is-equiv β-Lift : (π₯ : Universe) (X : π€ Μ ) β X β Lift π₯ X β-Lift π₯ X = lift π₯ , lift-is-equiv Lift-is-universe-embedding : (π₯ : Universe) β is-universe-embedding (Lift {π€} π₯) Lift-is-universe-embedding = Lift-β Lift-is-embedding : Univalence β is-embedding (Lift {π€} π₯) Lift-is-embedding {π€} {π₯} ua = universe-embeddings-are-embeddings ua π€ (π€ β π₯) (Lift π₯) (Lift-is-universe-embedding π₯) \end{code} Added 7th Feb 2019. Assuming propositional and functional extensionality instead of univalence, then lift-fibers of propositions are propositions. (For use in the module UF.Resize.) \begin{code} prop-fiber-criterion : PropExt β FunExt β (π€ π₯ : Universe) β (f : π€ Μ β π₯ Μ ) β is-universe-embedding f β (Q : π₯ Μ ) β is-prop Q β is-prop (fiber f Q) prop-fiber-criterion pe fe π€ π₯ f i Q j (P , r) = d (P , r) where k : is-prop (f P) k = transportβ»ΒΉ is-prop r j l : is-prop P l = equiv-to-prop (β-sym (i P)) k a : (X : π€ Μ ) β (f X οΌ f P) β (X οΌ P) a X = (f X οΌ f P) ββ¨ prop-univalent-β (pe π₯) (fe π₯ π₯) (f X) (f P) k β© (f X β f P) ββ¨ β-cong fe (i X) (i P) β© (X β P) ββ¨ β-sym (prop-univalent-β (pe π€) (fe π€ π€) X P l) β© (X οΌ P) β b : (Ξ£ X κ π€ Μ , f X οΌ f P) β (Ξ£ X κ π€ Μ , X οΌ P) b = Ξ£-cong a c : is-prop (Ξ£ X κ π€ Μ , f X οΌ f P) c = equiv-to-prop b (singleton-types'-are-props P) d : is-prop (Ξ£ X κ π€ Μ , f X οΌ Q) d = transport (Ξ» - β is-prop (Ξ£ X κ π€ Μ , f X οΌ -)) r c prop-fiber-Lift : PropExt β FunExt β (Q : π€ β π₯ Μ ) β is-prop Q β is-prop (fiber (Lift π₯) Q) prop-fiber-Lift {π€} {π₯} pe fe = prop-fiber-criterion pe fe π€ (π€ β π₯) (Lift {π€} π₯) (Lift-is-universe-embedding π₯) \end{code} Taken from the MGS'2019 lecture notes (22 December 2020): \begin{code} global-β-ap' : Univalence β (F : Universe β Universe) β (A : {π€ : Universe} β π€ Μ β (F π€) Μ ) β ({π€ π₯ : Universe} (X : π€ Μ ) β A X β A (Lift π₯ X)) β (X : π€ Μ ) (Y : π₯ Μ ) β X β Y β A X β A Y global-β-ap' {π€} {π₯} ua F A Ο X Y e = A X ββ¨ Ο X β© A (Lift π₯ X) ββ¨ idtoeq (A (Lift π₯ X)) (A (Lift π€ Y)) q β© A (Lift π€ Y) ββ¨ β-sym (Ο Y) β© A Y β where d : Lift π₯ X β Lift π€ Y d = Lift π₯ X ββ¨ Lift-is-universe-embedding π₯ X β© X ββ¨ e β© Y ββ¨ β-sym (Lift-is-universe-embedding π€ Y) β© Lift π€ Y β p : Lift π₯ X οΌ Lift π€ Y p = eqtoid (ua (π€ β π₯)) (Lift π₯ X) (Lift π€ Y) d q : A (Lift π₯ X) οΌ A (Lift π€ Y) q = ap A p global-property-of-types : π€Ο global-property-of-types = {π€ : Universe} β π€ Μ β π€ Μ global-property-of-typesβΊ : π€Ο global-property-of-typesβΊ = {π€ : Universe} β π€ Μ β π€ βΊ Μ cumulative : global-property-of-types β π€Ο cumulative A = {π€ π₯ : Universe} (X : π€ Μ ) β A X β A (Lift π₯ X) cumulativeβΊ : global-property-of-typesβΊ β π€Ο cumulativeβΊ A = {π€ π₯ : Universe} (X : π€ Μ ) β A X β A (Lift π₯ X) global-β-ap : Univalence β (A : global-property-of-types) β cumulative A β (X : π€ Μ ) (Y : π₯ Μ ) β X β Y β A X β A Y global-β-ap ua = global-β-ap' ua id global-β-apβΊ : Univalence β (A : global-property-of-typesβΊ) β cumulativeβΊ A β (X : π€ Μ ) (Y : π₯ Μ ) β X β Y β A X β A Y global-β-apβΊ ua = global-β-ap' ua (_βΊ) \end{code} Cumulativity in the above sense doesn't always hold. See the module LawvereFPT for a counter-example. Added 24th December 2020. Lifting of hSets. \begin{code} Lift-is-set : β {π€} π₯ (X : π€ Μ ) β is-set X β is-set (Lift π₯ X) Lift-is-set π₯ X X-is-set = equiv-to-set (Lift-is-universe-embedding π₯ X) X-is-set Lift-hSet : (π₯ : Universe) β hSet π€ β hSet (π€ β π₯) Lift-hSet π₯ = pair-fun (Lift π₯) (Lift-is-set π₯) Lift-is-set-is-embedding : funext (π€ β π₯) (π€ β π₯) β (X : π€ Μ ) β is-embedding (Lift-is-set π₯ X) Lift-is-set-is-embedding {π€} {π₯} fe X = maps-of-props-are-embeddings (Lift-is-set π₯ X) (being-set-is-prop (lower-funext π₯ π₯ fe)) (being-set-is-prop fe) Lift-hSet-is-embedding : Univalence β is-embedding (Lift-hSet {π€} π₯) Lift-hSet-is-embedding {π€} {π₯} ua = pair-fun-is-embedding (Lift π₯) (Lift-is-set π₯) (Lift-is-embedding ua) (Lift-is-set-is-embedding (Univalence-gives-FunExt ua (π€ β π₯) (π€ β π₯))) is-hSet-embedding : (hSet π€ β hSet π₯) β (π€ βΊ) β π₯ Μ is-hSet-embedding {π€} {π₯} f = (π§ : hSet π€) β underlying-set (f π§) β underlying-set π§ at-most-one-hSet-embedding : Univalence β (f g : hSet π€ β hSet π₯ ) β is-hSet-embedding f β is-hSet-embedding g β f οΌ g at-most-one-hSet-embedding {π€} {π₯} ua f g i j = p where h : β π§ β underlying-set (f π§) β underlying-set (g π§) h π§ = i π§ β β-sym (j π§) H : f βΌ g H π§ = to-subtype-οΌ (Ξ» π¨ β being-set-is-prop (univalence-gives-funext (ua π₯))) (eqtoid (ua π₯) (underlying-set (f π§)) (underlying-set (g π§)) (h π§)) p : f οΌ g p = dfunext (Univalence-gives-FunExt ua (π€ βΊ) (π₯ βΊ)) H the-only-hSet-embedding-is-Lift-hSet : Univalence β (f : hSet π€ β hSet (π€ β π₯ )) β is-hSet-embedding f β f οΌ Lift-hSet π₯ the-only-hSet-embedding-is-Lift-hSet {π€} {π₯} ua f i = at-most-one-hSet-embedding ua f (Lift-hSet π₯) i (Ξ» π§ β Lift-is-universe-embedding π₯ (underlying-set π§)) hSet-embeddings-are-embeddings : Univalence β (f : hSet π€ β hSet (π€ β π₯ )) β is-hSet-embedding f β is-embedding f hSet-embeddings-are-embeddings {π€} {π₯} ua f i = transport is-embedding ((the-only-hSet-embedding-is-Lift-hSet ua f i)β»ΒΉ) (Lift-hSet-is-embedding {π€} {π₯} ua) \end{code}