Martin Escardo 2011, extended 2018 with more properties of the function pair-fun.
Combining two functions to get a function Σ A → Σ B, and properties of
the resulting function.
\begin{code}
{-# OPTIONS --without-K --exact-split --safe --auto-inline #-}
module UF.PairFun where
open import MLTT.Spartan
open import TypeTopology.Density
open import UF.Subsingletons
open import UF.Equiv
open import UF.Embeddings
module _ {𝓤 𝓥 𝓦 𝓣}
{X : 𝓤 ̇ }
{A : X → 𝓥 ̇ }
{Y : 𝓦 ̇ }
{B : Y → 𝓣 ̇ }
(f : X → Y)
(g : (x : X) → A x → B (f x))
where
pair-fun : Σ A → Σ B
pair-fun (x , a) = (f x , g x a)
pair-fun-fiber' : (y : Y) → B y → 𝓤 ⊔ 𝓥 ⊔ 𝓦 ⊔ 𝓣 ̇
pair-fun-fiber' y b = Σ (x , a) ꞉ fiber f y , fiber (g x) (transport⁻¹ B a b)
pair-fun-fiber-≃ : (y : Y) (b : B y)
→ fiber pair-fun (y , b)
≃ pair-fun-fiber' y b
pair-fun-fiber-≃ y b = qinveq φ (γ , γφ , φγ)
where
φ : fiber pair-fun (y , b) → pair-fun-fiber' y b
φ ((x , a) , refl) = (x , refl) , (a , refl)
γ : pair-fun-fiber' y b → fiber pair-fun (y , b)
γ ((x , refl) , (a , refl)) = (x , a) , refl
γφ : (t : fiber pair-fun (y , b)) → γ (φ t) = t
γφ ((x , a) , refl) = refl
φγ : (s : pair-fun-fiber' y b) → φ (γ s) = s
φγ ((x , refl) , (a , refl)) = refl
pair-fun-is-embedding : is-embedding f
→ ((x : X) → is-embedding (g x))
→ is-embedding pair-fun
pair-fun-is-embedding e d (y , b) = h
where
i : is-prop (pair-fun-fiber' y b)
i = subtype-of-prop-is-prop
pr₁
(pr₁-lc (λ {w} → d (pr₁ w) (transport⁻¹ B (pr₂ w) b)))
(e y)
h : is-prop (fiber pair-fun (y , b))
h = equiv-to-prop (pair-fun-fiber-≃ y b) i
pair-fun-is-vv-equiv : is-vv-equiv f
→ ((x : X) → is-vv-equiv (g x))
→ is-vv-equiv pair-fun
pair-fun-is-vv-equiv e d (y , b) = h
where
k : is-prop (fiber pair-fun (y , b))
k = pair-fun-is-embedding
(equivs-are-embeddings f (vv-equivs-are-equivs f e))
(λ x → equivs-are-embeddings (g x) (vv-equivs-are-equivs (g x) (d x)))
(y , b)
x : X
x = fiber-point (center (e y))
i : f x = y
i = fiber-identification (center (e y))
w : pair-fun-fiber' y b
w = (center (e y) , center (d x (transport⁻¹ B i b)))
h : is-singleton (fiber pair-fun (y , b))
h = pointed-props-are-singletons (⌜ pair-fun-fiber-≃ y b ⌝⁻¹ w) k
pair-fun-is-equiv : is-equiv f
→ ((x : X) → is-equiv (g x))
→ is-equiv pair-fun
pair-fun-is-equiv e d = vv-equivs-are-equivs pair-fun
(pair-fun-is-vv-equiv
(equivs-are-vv-equivs f e)
(λ x → equivs-are-vv-equivs (g x) (d x)))
pair-fun-dense : is-dense f
→ ((x : X) → is-dense (g x))
→ is-dense pair-fun
pair-fun-dense i j = contrapositive γ i
where
γ : (Σ w ꞉ Σ B , ¬ fiber pair-fun w) → Σ y ꞉ Y , ¬ fiber f y
γ ((y , b) , n) = y , m
where
m : ¬ fiber f y
m (x , refl) = j x (b , l)
where
l : ¬ fiber (g x) b
l (a , refl) = n ((x , a) , refl)
open import UF.PropTrunc
module pair-fun-surjection (pt : propositional-truncations-exist) where
open PropositionalTruncation pt
open import UF.ImageAndSurjection pt
pair-fun-is-surjection : is-surjection f
→ ((x : X) → is-surjection (g x))
→ is-surjection pair-fun
pair-fun-is-surjection s t (y , b) = γ
where
γ : ∃ (x , a) ꞉ Σ A , (pair-fun (x , a) = y , b)
γ = ∥∥-rec ∃-is-prop
(λ {(x , refl) → ∥∥-rec ∃-is-prop
(λ {(a , refl) → ∣ (x , a) , refl ∣})
(t x b)})
(s y)
module _ {𝓤 𝓥 𝓦 𝓣} {X : 𝓤 ̇} {A : X → 𝓥 ̇} {Y : 𝓦 ̇} {B : Y → 𝓣 ̇} where
pair-fun-equiv
: (f : X ≃ Y)
→ (g : (x : X) → A x ≃ B (eqtofun f x))
→ Σ A ≃ Σ B
pr₁ (pair-fun-equiv f g) =
pair-fun (eqtofun f) λ x →
eqtofun (g x)
pr₂ (pair-fun-equiv f g) =
pair-fun-is-equiv _ _ (eqtofun- f) λ x →
eqtofun- (g x)
\end{code}