Martin Escardo, December 2020 A notion of disconnectedness. This is different from homotopy disconnectedness in the sense of the HoTT book. It is based on the topological, rather than homotopical, interpretation of types. A discussion of such models is in M.H. Escardo and Chuangjie Xu. A constructive manifestation of the Kleene-Kreisel continuous functionals. Annals of Pure and Applied Logic, 2016. and M.H. Escardo and Thomas Streicher. Annals of Pure and Applied Logic, 2016. \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} module TypeTopology.DisconnectedTypes where open import MLTT.Spartan open import MLTT.Two-Properties open import Naturals.Properties open import TypeTopology.DiscreteAndSeparated open import UF.Retracts open import UF.Equiv \end{code} The following notions of disconnectedness are data rather than property. \begin{code} disconnected₀ : 𝓤 ̇ → 𝓤 ̇ disconnected₀ X = retract 𝟚 of X disconnected₁ : 𝓤 ̇ → 𝓤 ̇ disconnected₁ X = Σ p ꞉ (X → 𝟚) , fiber p ₀ × fiber p ₁ disconnected₂ : 𝓤 ̇ → 𝓤 ⁺ ̇ disconnected₂ {𝓤} X = Σ X₀ ꞉ 𝓤 ̇ , Σ X₁ ꞉ 𝓤 ̇ , X₀ × X₁ × (X ≃ X₀ + X₁) disconnected₃ : 𝓤 ̇ → 𝓤 ⁺ ̇ disconnected₃ {𝓤} X = Σ X₀ ꞉ 𝓤 ̇ , Σ X₁ ꞉ 𝓤 ̇ , X₀ × X₁ × (retract (X₀ + X₁) of X) disconnected-eq : (X : 𝓤 ̇ ) → (disconnected₀ X → disconnected₁ X) × (disconnected₁ X → disconnected₂ X) × (disconnected₂ X → disconnected₃ X) × (disconnected₃ X → disconnected₀ X) disconnected-eq {𝓤} X = (f , g , h , k) where f : (Σ p ꞉ (X → 𝟚) , Σ s ꞉ (𝟚 → X) , p ∘ s ∼ id) → Σ p ꞉ (X → 𝟚) , (Σ x ꞉ X , p x = ₀) × (Σ x ꞉ X , p x = ₁) f (p , s , e) = p , (s ₀ , e ₀) , (s ₁ , e ₁) g : (Σ p ꞉ (X → 𝟚) , (Σ x ꞉ X , p x = ₀) × (Σ x ꞉ X , p x = ₁)) → Σ X₀ ꞉ 𝓤 ̇ , Σ X₁ ꞉ 𝓤 ̇ , X₀ × X₁ × (X ≃ X₀ + X₁) g (p , (x₀ , e₀) , (x₁ , e₁)) = (Σ x ꞉ X , p x = ₀) , (Σ x ꞉ X , p x = ₁) , (x₀ , e₀) , (x₁ , e₁) , qinveq ϕ (γ , γϕ , ϕγ) where ϕ : X → (Σ x ꞉ X , p x = ₀) + (Σ x ꞉ X , p x = ₁) ϕ x = 𝟚-equality-cases (λ (r₀ : p x = ₀) → inl (x , r₀)) (λ (r₁ : p x = ₁) → inr (x , r₁)) γ : (Σ x ꞉ X , p x = ₀) + (Σ x ꞉ X , p x = ₁) → X γ (inl (x , r₀)) = x γ (inr (x , r₁)) = x ϕγ : ϕ ∘ γ ∼ id ϕγ (inl (x , r₀)) = 𝟚-equality-cases₀ r₀ ϕγ (inr (x , r₁)) = 𝟚-equality-cases₁ r₁ γϕ : γ ∘ ϕ ∼ id γϕ x = 𝟚-equality-cases (λ (r₀ : p x = ₀) → ap γ (𝟚-equality-cases₀ r₀)) (λ (r₁ : p x = ₁) → ap γ (𝟚-equality-cases₁ r₁)) h : (Σ X₀ ꞉ 𝓤 ̇ , Σ X₁ ꞉ 𝓤 ̇ , X₀ × X₁ × (X ≃ X₀ + X₁)) → (Σ X₀ ꞉ 𝓤 ̇ , Σ X₁ ꞉ 𝓤 ̇ , X₀ × X₁ × (retract (X₀ + X₁) of X)) h (X₀ , X₁ , x₀ , x₁ , (γ , (ϕ , γϕ) , _)) = (X₀ , X₁ , x₀ , x₁ , (γ , ϕ , γϕ)) k : (Σ X₀ ꞉ 𝓤 ̇ , Σ X₁ ꞉ 𝓤 ̇ , X₀ × X₁ × (retract (X₀ + X₁) of X)) → Σ p ꞉ (X → 𝟚) , Σ s ꞉ (𝟚 → X) , p ∘ s ∼ id k (X₀ , X₁ , x₀ , x₁ , (γ , ϕ , γϕ)) = p , s , ps where p : X → 𝟚 p x = Cases (γ x) (λ _ → ₀) (λ _ → ₁) s : 𝟚 → X s ₀ = ϕ (inl x₀) s ₁ = ϕ (inr x₁) ps : p ∘ s ∼ id ps ₀ = ap (cases (λ _ → ₀) (λ _ → ₁)) (γϕ (inl x₀)) ps ₁ = ap (cases (λ _ → ₀) (λ _ → ₁)) (γϕ (inr x₁)) \end{code} The following is our official notion of disconnectedness (logically equivalent to the other ones): \begin{code} disconnected : 𝓤 ̇ → 𝓤 ̇ disconnected = disconnected₀ \end{code} Some examples: \begin{code} 𝟚-disconnected : disconnected 𝟚 𝟚-disconnected = identity-retraction ℕ-disconnected : disconnected ℕ ℕ-disconnected = (r , s , rs) where r : ℕ → 𝟚 r zero = ₀ r (succ n) = ₁ s : 𝟚 → ℕ s ₀ = zero s ₁ = succ zero rs : (n : 𝟚) → r (s n) = n rs ₀ = refl rs ₁ = refl isolated-point-different-from-another-point-gives-disconnected : {Y : 𝓥 ̇ } → (Σ y₀ ꞉ Y , Σ y₁ ꞉ Y , (y₀ ≠ y₁) × is-isolated y₀ ) → disconnected Y isolated-point-different-from-another-point-gives-disconnected (y₀ , y₁ , ne , i) = 𝟚-retract-of-non-trivial-type-with-isolated-point ne i discrete-type-with-two-different-points-gives-disconnected : {Y : 𝓥 ̇ } → (Σ y₀ ꞉ Y , Σ y₁ ꞉ Y , y₀ ≠ y₁) → is-discrete Y → disconnected Y discrete-type-with-two-different-points-gives-disconnected (y₀ , y₁ , ne) d = isolated-point-different-from-another-point-gives-disconnected (y₀ , y₁ , ne , d y₀) ℕ-disconnected' : disconnected ℕ ℕ-disconnected' = discrete-type-with-two-different-points-gives-disconnected (0 , 1 , succ-no-fp 0) ℕ-is-discrete disconnected-retract : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → retract X of Y → disconnected X → disconnected Y disconnected-retract = retracts-compose \end{code} TODO. Define totally disconnected. Then maybe for compact types the notions of total disconnectedness and total separatedness agree. The negation of disconnectedness can be expressed positively in various equivalent ways. \begin{code} open import TypeTopology.TotallySeparated open import UF.Base open import UF.FunExt open import UF.Subsingletons open import UF.Subsingletons-FunExt open import UF.Miscelanea is-connected₀ : 𝓤 ̇ → 𝓤 ̇ is-connected₀ X = (f : X → 𝟚) → wconstant f is-connected₁ : 𝓤 ̇ → 𝓤 ̇ is-connected₁ X = (x y : X) → x =₂ y is-connected₂ : 𝓤 ̇ → 𝓤 ̇ is-connected₂ X = ¬ disconnected X is-connected₀-gives-is-connected₁ : {X : 𝓤 ̇ } → is-connected₀ X → is-connected₁ X is-connected₀-gives-is-connected₁ i x y p = i p x y is-connected₁-gives-is-connected₀ : {X : 𝓤 ̇ } → is-connected₁ X → is-connected₀ X is-connected₁-gives-is-connected₀ ϕ f x y = ϕ x y f is-connected₀-gives-is-connected₂ : {X : 𝓤 ̇ } → is-connected₀ X → is-connected₂ X is-connected₀-gives-is-connected₂ c (r , s , rs) = n (c r) where n : ¬ wconstant r n κ = zero-is-not-one (₀ =⟨ (rs ₀)⁻¹ ⟩ r (s ₀) =⟨ κ (s ₀) (s ₁) ⟩ r (s ₁) =⟨ rs ₁ ⟩ ₁ ∎) disconnected-types-are-not-connected : {X : 𝓤 ̇ } → disconnected X → ¬ is-connected₀ X disconnected-types-are-not-connected c d = is-connected₀-gives-is-connected₂ d c is-connected₂-gives-is-connected₀ : {X : 𝓤 ̇ } → is-connected₂ X → is-connected₀ X is-connected₂-gives-is-connected₀ {𝓤} {X} n f x y = 𝟚-is-¬¬-separated (f x) (f y) ϕ where ϕ : ¬¬ (f x = f y) ϕ u = n (f , s , fs) where s : 𝟚 → X s ₀ = 𝟚-equality-cases (λ (p₀ : f x = ₀) → x) (λ (p₁ : f x = ₁) → y) s ₁ = 𝟚-equality-cases (λ (p₀ : f x = ₀) → y) (λ (p₁ : f x = ₁) → x) a : f x = ₁ → f y = ₀ a p = different-from-₁-equal-₀ (λ (q : f y = ₁) → u (p ∙ (q ⁻¹))) b : f x = ₀ → f y = ₁ b p = different-from-₀-equal-₁ (λ (q : f y = ₀) → u (p ∙ q ⁻¹)) fs : f ∘ s ∼ id fs ₀ = 𝟚-equality-cases (λ (p₀ : f x = ₀) → f (s ₀) =⟨ ap f (𝟚-equality-cases₀ p₀) ⟩ f x =⟨ p₀ ⟩ ₀ ∎) (λ (p₁ : f x = ₁) → f (s ₀) =⟨ ap f (𝟚-equality-cases₁ p₁) ⟩ f y =⟨ a p₁ ⟩ ₀ ∎) fs ₁ = 𝟚-equality-cases (λ (p₀ : f x = ₀) → f (s ₁) =⟨ ap f (𝟚-equality-cases₀ p₀) ⟩ f y =⟨ b p₀ ⟩ ₁ ∎) (λ (p₁ : f x = ₁) → f (s ₁) =⟨ ap f (𝟚-equality-cases₁ p₁) ⟩ f x =⟨ p₁ ⟩ ₁ ∎) is-connected : 𝓤 ̇ → 𝓤 ̇ is-connected = is-connected₀ being-connected-is-prop : {X : 𝓤 ̇ } → Fun-Ext → is-prop (is-connected X) being-connected-is-prop fe = Π₃-is-prop fe (λ f x y → 𝟚-is-set) \end{code} TODO. Is it possible to define sensible analogues for types of total disconnectedness and zero-dimensionality for topological spaces?